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Sturm-Liouville operators on a finite interval. Consider the BVP L:
by = —y" +q(x)y =Xy, 0<x<m, q(x) € L0,7), (1)

U(y) :==y'(0) = hy(0) =0, V(y):=y'(r)+ Hy(r) = 0.

Let p(x, A), S(x, A) be the solutions of Eq. (1) with the conditions
©(0,\) =1, ¢'(0,A\) = h, 5(0,A\) =0, S’(0,\) = 1. Denote

A(N) = V(p), {Antn>0, an= /07r ©?(x, \n) dx.

IP 1. (V. Marchenko, 1950). Given {\p, a,}, construct g, h, H.
Consider the BVP L for (1) with the conditions y(0) = V(y) = 0.

5(A) = V(S), {va}nzo-

IP 2. (G. Borg, 1946). Given {\,,v,}, construct g, h, H.
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3) The Weyl function. Let ®(x, \) be the solution of Eq.(1) with the

conditions U(®) =1, V(P) = 0. We set M(\) := (0, \).
IP 3. Given M(), construct g, h, H.

MO ==y MO =X

0
T A — A CTT Va— A
A()\)_w()\o—)\)nl—ll —— 5()\)_nl_[0(n+1/2)2.

IP 3 is equivalent to IP 1 and IP 2.
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Sturm-Liouville operators on the half-line. Consider the BVP L:
by == —y"+q(x)y =y, x>0, q(x) € L(0,00), (4)
U(y) == y'(0) — hy(0) = 0.
Let ®(x, \) be the solution of (4) under the conditions
U(®) =1, &(x,\) = O(exp(ipx)), x — o0,
where A = p2, Imp > 0. Denote M()\) := &(0, \).
IP 4. Given M()), construct g(x) and h.

> do(p)
oo A

M()\) =
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Transformation operator method: V.Marchenko, B.Levitan, 1950-51.

Let A\ = p?. The following representation is valid

©(x, A) = cos px + /OX G(x, t) cos pt dt, (6)
4(x) = % G(x,x), h=G(0,0). (7)

Case 1: finite interval. Take a model BVP L with § =0, h= H = 0.
Then A\, = n?, n > 0. Consider the function

o
COSs X COS t COS nx cos nt
Flxot) = 3 ((SomPmeeenrt )

leY &
I‘IZO n n

1 N .
= — / cos px cos ptM(X) d\, M: =M — M, (8)
27i ),

&n=m/2(n>0);ég = m; 7 is a contour encircling the spectra of L and L.
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Theorem 2. For each fixed x, the kernel G(x,t) from representation (6)
satisties the linear integral equation

G(x,t)+F(x,t)+/X G(x,s)F(s,t)ds =0,0<t < x. (9)
0

Case 2: the half-line. Take a model BVP [ with §(x) =0, h=0.
Consider the function

™

1 A
F(x,t) = 2_/cospx cos ptM(A) dA, (10)
v

where 7 is a contour encircling the spectra of L and L.
Theorem 2 remains true with (10) instead of (8).

In both cases g(x) and h can be constructed by (7).
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Method of Spectral Mappings: V. Yurko, 1985-1986
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Higher-order differential equations:
n—2

ty =y 3 ply® = Ay, n>2 (11)
k=0
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Method of Spectral Mappings for Sturm-Liouville operators

Let the Weyl function M(A) be given. Choose a model BVP [ with g and h
(for example, one can take §(x) =0, h=0 — @(x,\) = cos px). Denote

Fx, A ) = <“§); “”Mmr:AX<tM(thm«m

where M := M — M, (y,z) :=yz — y'z.
Theorem 3. The following relation holds

BN = ox V) + 5 [ H A melemde (12)

Here + is a contour encircling the spectra.
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Consider the Banach space C(7) of continuous bounded functions
z(A), A € v, with the norm ||z|| = sup|z(A)].
A€y

Theorem 4. For each x, Eq. (12) has a unique solution p(x,\) € C(7).
Theorem 5. The following relations hold

q(x) = d(x) — 2ej(x), h = h —e0(0), (13)
co(x) = 5 [ B0 el m)BM(a)
gl

Algorithm 1. Let the function M()) be given.
(1) Choose L and construct ¢ and .

(2) Find p(x,\) by solving equation (12).

(3) Construct q(x) and h via (13).
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Proof of Theorem 3. Consider the functions
Pip = —0F, Pp=0p—0d. (14)
Since ®’ — ¢’ =1, it follows from (14) that
p(x, A) = Pri(x, A)B(x, A) + Pra(x, A)@'(x, A).

One has
Pik(x,A) — b1k = O(p™ 1Y), |A| = o0, A = p?, (15)

where §j is the Kronecker symbol. For definiteness we consider the case of
the half-line. For a finite interval the arguments are similar.
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Denote by A the discrete spectrum; it is a bounded set. In the A - plane we
consider the contour v = +" U~" (with counterclockwise circuit), where ~/
is a bounded closed contour encircling the set AUA U {0}, and 7 is the
two-sided cut along the arc {A: A >0, A ¢ int+'}. Denote

Jy={X: X ¢ ~yUinty'}. Consider the contour yg =yN{A: [N\ < R}
with counterclockwise circuit, and also consider the contour

7% =~yr U{X: |A| = R} with clockwise circuit. By Cauchy's integral

formula, ( )
1 P1i(x, i) — 01k
P A) = = — ———d
1k(X; A) = O 27 [yo A— 1

where \ € int~%. Using (15) we get

lim / Pudom) =0y, o,
R—o00 lu|=R A— 1%
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1 P1k(x, 1)
Pux(x, ) = 614 + 27“[/ ol d A€

Since ¢ = P11 + P12@’, one has

1 /@(X,A)Pn( 1) + <5(X,)\)P12(X7M)d
v A= "

o(x, ) = @(x, \) + 5

Taking (14) into account we get

P A) = B A) + o / (00 ) (s 1), 1) — D(x, 1) P (. )+
Y

27

@' (3, A)(®(x, 1)@ (x, 1) — o(x, 1) (x, M))Ad_uu.

Using the relations ® = S 4+ My, ® = § 4+ M@, we arrive at (12), since
the terms with S(x, 1) vanish by Cauchy's theorem.

17 mions 2023 . 12 / 37



Higher-order operators, 1985-1986. Consider the equation

n—2
by =y )y =y, n>2. (1)
k=0

Let A = p". The p- plane can be partitioned into sectors S, of angle =
(5,, ={p: argp e (ﬂ M)}’ v=20,2n— 1) in each of which the

n?’ n
roots Ry, Ry, ..., R, of the equation R" — 1 = 0 can be numbered in such
a way that

Re(pRi) < ... < Re(pRn), p€S,.

Let ®,n(x,A), m=1,n, be the solutions of Eq. (1) with the conditions

o070, 0) = b¢m, E=T,m,

®m(x,A) = O(exp(pRmx)), x —o00, p€S,.
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Denote M(A) = [Mnk(\)l st Mmk(X) = ®h (0, 1). The matrix
M(X) is called the Weyl matrix for .

Example: n=4.

®7'(0,A) =1, ®1(x, ) = O(exp(pRix)),

®7'(0,A) =0, ®5(0,\) =1, d(x, ) = O(exp(pRax)),

®4(0,A) = 4(0,A) = 0, P5(0,A) = 1, P3(x, \) = O(exp(pRsx)),
(0,4)

(0, 1) = D4(0,)) = d4(0,A) =0, d4(0,\) =1,
1 Mia(A) Mis(A) Mig(N)
01 Mas(\) Ma(N)
MN=19 o 1 Ms())

0 0 0 1
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Inverse problem. Given the Weyl matrix M()), construct £.
Let My :={A\: £X >0}, and Ny be the A- plane with a cut along .

Theorem 1. The Weyl matrix M(\) has the following properties:

1) Mmk(/\) = 5mk7 m > k.

2) The functions Mmk()) are analytic in T1(_yys-m with the exception of at
most countable bounded sets N of poles and are continuous in ﬁ(,l)nfm
with the exception of bounded sets A y.

3) Myuk(A) = O(p™=F) as |A| — co.

4) The functions (Mpi — Mm m+1Mmy1,k)(X) are analytic for

A €T (_qy-m \ A, where A = Um7k Amk-
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Let M()\) be the Weyl matrix for £. Take a model operator 7. In the
A-plane we consider the contour v = vy_1 U~y U~ (with a
counterclockwise circuit), where 7y is a bounded closed contour encircling
the set AUAU {0} (i.e. AUAU {0} C intyg), and 741 is a two-sided cut
along the ray {A: £X >0, A ¢ inty}. Denote

p(x,A) = D((=1)" N Ok (x, iz

where x+1(A) =1 for A € 40 Uy+1, x+1(A) =0 for X € 1.

Theorem 2. For each fixed x > 0, the vector p(x, \) is a solution of the
linear singular integral equation

B ) = Qe N + 5 [P oy ae (2
Y

where Q(\) and H(x, A, ;1) are constructed from ¢ and M()).
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Denote Q(x, A) = diag [p"* exp(—pRixX)]i 57>
"={A: AemUr-1, d(A70) > ap > 0}, 7' =7\ 9", where
d(A,70) ;= inf |\ — |, u € v0. We introduce the Banach space
B =Ly} (v) @ LI1(v") of vector-valued functions z(\) = [zi(M)]j=t=1>
A € v with the norm

n—1

Izlls = > (12l + 12l )

j=1

Theorem 3. For each x > 0, equation (2) has a unique solution in the
class Q(x, N)p(x, A) € B, and sup ||Q2(x, A)p(x, N)|lg < oc.

Algorithm. 1) Choose a model operator 7.

2) Construct the matrices H(x, A, 1), Q(A\), B(x, A), x >0, A\, € 7.
3) Find o(x, ), x > 0, A € v by solving the main equation (2).

4) Construct .
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Inverse problems for systems: V. Yurko, 2004-2005.
Consider the system
Y(x):= QY (x)+ Qx)Y(x) =pY(x), x>0, (1)
Qo = diag[qk] 15 Q(x) = [aki(x)]x j=15 Grk(x) = 0. Let Bx = 1/qx.
The p- plane can be partitioned into sectors S; = {p : argp € (0;,011)},
j=0,2r—1,0<6y < 0; < ...<B0_1 <2m, in each of which there

exists a permutation i = /k(S) of the numbers 1,..., n, such that for the
numbers Ry = Ri(S;) of the form R, = 3;, one has

Re(pR1) < ... <Re(pRn), p€S;. (2)
Let the matrix h = [he,]; ,_17, deth # 0 be given. We introduce the

linear forms U(Y) = [Ue(Y )5 in by U(Y) = hY(0).
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Denote Q(r)nk(jl’ o ,jm) = det[h&jl’]ézm’k; v=T,m" Let

Q (i,...,im)#0, m=T,n—1, j=0,2r — 1.

This condition is called the information condition for L = (¢, U).

Let ®pn(x, p) = [Phm(x, p)][_i- m =1, n, be solutions of system (1)
under the conditions

Uf(q)m) = 6§m7 5 = 17 m,

S m(x, p) = O(exp(pRmx)), x -+ 20, p € ;.
Let Mine(p) = Ue(Pm), M(p) = [Mme(p)]m e~
Inverse problem. Given M(p), construct @ and h.

Theorem 1. The specification of the Weyl matrix M(p) uniquely
determines the potential Q(x) and the matrix h.
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2r—1
Denote Fj = {p rarg p= Hj},j: 0,2r—1, I, :=1Ty, Y = U Sj -
j=0
the p-plane without the cuts along the rays I';. Let
I'Jj-E = {p: argp =0; £ 0} be the sides of the cuts.

Fix j = 0,2r — 1. For p € T}, strict inequalities from (2) in some places
become equalities. Let m; = m;(j), p; = pi(j), i = 1, s be such that for
pE r_i: Re(pRmI,l) < Re(pRm[) == Re(pRmi+Pi) < Re(pRmi+Pi+1)7
Rk = Ri(Sj). Let Nj:={m:m=my,m +p1—1,...,ms,ms + ps — 1},
IJni={j: meN;}, ym= U T}, and let X, = C\ 7, be the p- plane
Jj€JIm
without the cuts along the rays from ~,,. Clearly, the domain ¥, = JSm,
v

consists of the sectors S, each of which is a union of several sectors S;
with the same set {R¢}._1 7.
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We introduce the functions Bfnk(p) by
B2(P) = Mimk(p), Brye(p) = B (0) = By mye(P) By (1),
E=0n—-2, m=1n—-¢-1, k=m+&+1,n.

Denote by M the set of functions M(p) = [Mpk(p)],, k=15 such that:
1) Muk(p) = Omk for m > k; C
2) The function Myk(p), kK > m, is analytic in X, with the exception of an
at most countable bounded set A/, of poles, and are continuous in ¥, with
the exception of a bounded set A,;;
3) The function B],""(p) is analytic on
TN ¢ dml<v<m<n—-1m+1<k<n

Q0 (i, yim
) M) = 1(5) + O ). 1u(5) = gices)
Theorem 2. If M(p) is the Weyl matrix for a pair L = (¢, U), then
M(p) € M.

,pESJ-.
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Denote A := A1 U...UA,_1. Let M(p) be the Weyl matrix for L = (¢, U).
We choose a pair L = (¢, U) such that M(p) — M(p) = O(p~1), |p| — oo.
In the p- plane we consider the contour w* := w® Uw?!, where w° is a

bounded closed contour encircling the set AUA U {0} (i.e.
- 2r—1
AUAU{0} C intw?), and w! = 'Uo wi, wi={p: pel;\w’}. Denote
J:

[®F(x, p), ®~(x,p)], pE€w,
p(x,p) = 0
®(x, p), pE W,
2r—1
where ©F = Pt wE = ! wji, wf = I_ji \ intw?.

We consider the Banach space B, := {f(p) : f(p)p~! € Lp(w*)}, p > 1
with the norm ||f]|5, := Hf(p)p’lﬂLp(w*).
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Theorem 3. Let M(p) be the Weyl matrix for the pair L = (¢, U). The
following relation is valid for p € w*:

1

Bxip) =0 )S(0) + 5 [ elemrxmpde @)

where S(p) and r(x, p, 1) are constructed from ¢ and M(p).

For each fixed x > 0, equation (3) has the unique solution ¢(x, p) in the
class ¢(x, p)D(x, p) € B, for each p > 1; and

sup (. £)D(x, )5, < 0.

Algorithm. 1) Choose a model pair L = (7, 0).
2) Construct the matrices r(x, p, 1), S(p), P(x
3) Find ¢(x, p) by solving the main equation (3).
4) Construct Q(x) and h.
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Theorem 4. For a matrix M(p) € M to be the Weyl matrix for a pair
L= (¢,U), it is necessary and sufficient that the following conditions are

fulfilled:

1) (asymptotics) there exists a pair [ = (4, 0) such that

M(p) — M(p) = O(p™"), |p| = oo, holds;

2) (condition P) for each fixed x > 0, the main equation (3) has a unique
solution ¢(x, p) in the class p(x, p)D(x, p) € Bp, p > 1, and

sup le(x, p)D(x, p)|B, < 00;

3) £(x) € W, where

1 % 3k
2 = 5 / (©0x 1) Ao(1)®" (x, 1) Qo — Qo(x, 1) Ao()®" (x, 1)) .
Under these conditions the pair L = (¢, U) is constructed by the formulae

Q(x) = Q(x) +¢e(x), h=h.
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Inverse Spectral Problems for Sturm-Liouville Operators on Graphs

Yurko V.A. Inverse Problems, 21, no.3 (2005), 1075-1086.

Let T be a compact, simply connected rooted tree in R™ with the root vy,
the set of vertices V = {w, ..., v, } and the set of edges £ = {e1,..., e }.
We suppose that the length of each edge is equal to 1. For two points

a,b e T we will write a < b if a lies on a unique simple path connecting the
root vp with b; let |b| stand for the length of this path. We will write a < b
ifa<band a#b.If a<bwedenote [a,b] ={ze T: a<z<b} If
e = [v,w] is an edge, we call v its initial point, w its end point and say
that e emanates from v and terminates at w. We denote by

R(v) :={e€&: e=[v,w], w € V} the set of edges emanating from v.
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V:{te,., v} ore vertices, ie =9,
[s {lf;,,_., ;) are Qoundary verdices, ie p=S
6=4 i3 He Keight of Hhe free



For any v € V the number |v/| is called the order of v. For e € £ its order
is defined as the order of its end point. The number o := max;_17 [vj| is

called the height of the tree 7. Let V¥ :={ve V: |v|=pu}, p=0,0
be the set of vertices of order u, and let

EW ={ec&: e=[v,w],ve V=D we VW] 1 =T 0 be the set
of edges of order u. Each edge e € £ is viewed as a segment [0, 1] and is
parameterized by the parameter x € [0, 1]. We choose the following
orientation on each edge e = [v,w] € &: if z = z(x) € e, then

z(0) = w, z(1) = v, i.e. x = 0 corresponds to the end point w. We
enumerate the vertices v; as follows: ' :== {vg, v1,...,Vv,} are boundary
vertices, vpy1 € v, and vj, j > p+ 1 are enumerated in order of
increasing |v;|. We enumerate the edges similarly, namely: e; = [v;,, vj],
J=1,r, jk <j. In particular, E :={ey,...,ep11} is the set of boundary
edges; ep+1 = [vo, Vp+1] is called the rooted edge of T.
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An integrable function Y on T may be represented as a vector

Y(x) = [yj(x)]jes, x € [0,1], where J := {j : j =1,r}, and the function
yj(x) is defined on the edge ;. Let g = [qj]jc is an integrable real-valued
function on T which is called the potential. Consider the Sturm-Liouville
equation on T:

—y/(x) + qi(x)y;(x) = Ayj(x), x€[0,1], j € J, (1)

yj(x), yj(x) € AC[0,1] and satisfy the following 2r — p — 1 matching
conditions in each internal vertex v, k = p+1,r:

(1) = y(0) forall g € R(vi), S (1) =yi(0).  (2)
eeR(vk)

Let Ly be the boundary value problem (BVP) defined by (1)-(3), where

Y, =0, j=0,p. (3)
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Let Ly, k =1, p, be the BVP for (1) satisfying (2) and
%) =0, Y, =0 j=0p\k (4)

Let {\ik}i>1, kK =0, p, be the eigenvalues of Ly of the form (1)-(3) for
k =0, and (1), (2), (4) for k =1, p, respectively.

Let Wi(x,A) = [¥xj(x,A)]jes, k =0, p, be solutions of equation (1)
satisfying (2) and the boundary conditions

vy lvi — 5kj7 J=0,p. (5)

Let M(X\) = [I\/Ik()\)]k:ﬁ, M (X) == 1}, (0, ).
Inverse Problem 1. Given the Weyl vector M, construct g on T.

Inverse Problem 2. Given spectra {\j},>1, k =0, p, construct g on T.
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The Weyl functions My () are meromorphic in A:

Ag(N)
AQ)

Mk(>\) = k = 1ap)

where A(X) and Ak () are the characteristic functions for Lo and Ly,
respectively.

Let oy, be the residues of My () at the poles \.
The data S := {)\/O,a,k},>1 k—Tp are called the spectral data for Lg.

Inverse Problem 3. Given S, construct the potential g on T.
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Local inverse problem. Fix k = 1, p, and consider the following auxiliary
inverse problem on the edge e:

IP(k). Given My (\), construct gk(x), x € [0, 1].

Theorem 1. If My()\) = My(\), then qi(x) = §k(x) a.e. on [0,1]. Thus,
the specification of the Weyl function M, uniquely determines the potential
gk on the edge ey.

Using the method of spectral mappings for the Sturm-Liouville operator on
the edge e, one can get a constructive procedure for the solution of the
local inverse problem IP(k).

Pseudo-cutting procedure!
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Let Ci(x, ), Sj(x,A), j € J, x € [0,1] be solutions of Eq. (1) on the edge
ej under the conditions C;(0, ) = 5/(0,A) =1, C/(0,A) = 5;(0,A) = 0.
Denote

M(A) = ¥ii(0,A), Mig(A) = 450, A), k=0,p, j € J.

Then
big (%, A) = Mig(A) Gi(x, A) + Mg(X)Sj(x, A), (6)

¢kk(x7 /\) = Ck(X, )\) -+ Mk(A)Sk(x, )\), k=1, p. (7)
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Problem Z(T,vg,a). Let W = [¢);]jc, be the solution of equation (1) on
T satisfying (2) and the boundary conditions

vV, =adp, viel,acC. (8)

Vi
Denote mjo()\) = i(0, ), m}(A) =1j(0,A), j € J. Then

(%, A) = mH(A) Gx, A) + mj () Sj(x, A). (9)

Substituting (9) into (2) and (8) we obtain a linear algebraic system for
mJ(-)()\), m}()\), J € J. The determinant of this system is A()). Solving this
system by Kramer's rule we find the transition matrix [m?(X), mi(A)]je for

T with respect to vy and a.
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Fix v, € V. Denote T,? ={zeT: vw<z} Te:=T)\ TE. Let I, be the
set of boundary vertices of Tj. Denote Ji :={j : e € Ti}. Fix v ¢T.
Let Wi (x, A) = [¢ki(x, A)]jey, be the solution of (1)-(2), Wy, = dxj on
Tk, vj € Ti; Mi(X) =1 (0,X), k =p+1,ris the WF on Ty for v.
Lemma. Fix vy, ¢ I'. Let ex = [V, vk] € R(Vm). Then

Mm(2) = Z Vig(LA). (10)

&€R(vm)

wkk(

Denote I\/I,%-()\) = 1;(0, ), I\/I,b-(A) =i(0,N), k=p+1,r, j € Ji. Then
(6) and (7) hold for k =1,r, j € J, where Jy = J for k=1,p —

P(1,0) = ML) SN + M) SH (1)), (11)

(1,0 = (1, 0) + M(V)SH (L, 0). (12)
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Solution of Inverse Problems 1-3. Let us formulate the uniqueness
theorems for the solution of these inverse problems.

Theorem 2. The specification of the Weyl vector M uniquely determines
the potential g on T.

Theorem 3. The specification of the spectra {\i};>1 of the boundary
value problems L, k = 0, p uniquely determines the potential q on T.

Theorem 4. The specification of the spectral data S uniquely determines
the potential g on T.

Let the Weyl vector M(X) = [My(A)],_1 for the tree T be given. The
procedure for the solution of Inverse Problem 1 consists in the realization
of the so-called A,- procedures successively for u = o,0 —1,...,1, where
o is the height of the tree T.
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A, - procedure. 1) For each edge e € £ we solve the local inverse
problem IP(k) and find gk(x), x € [0, 1] on the edge .

2) For each e, € £(9), we construct Cy(x, ), Sk(x, ), and calculate
W(1,0), v =0,1, by (12): ${(1,2) = C(1,A) + Me(A\)S(1,A).
3) Returning procedure. For each fixed v,,, € V(=) \ T and for all
&, ek € R(vm), j # k, we construct M§;(A), s = 0,1, via
MI%J()\) = 0? Ml(()j()‘) = ¢kk(1’)‘)/sj(17)‘)a €j, €k € R(Vm)v ./ 75 k.
4) For each v, € V@D \ T we find M,,()\) by (10), where Vi (1, A) are
constructed via (11): 9;(1,A) = MkJ(A)C’( JA) + %(A)Sf(l,)\).

Now we carry out A,- procedures for i = 1,0 — 1 by induction. Fix
=1,0 —1, and suppose that A,, ..., A, 1- procedures have been
already carrled out. Let us carry out A,- procedure.
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Retunrning proceduze
le? G e VTN
Fix e.eR(s) and consider Fi=[%les,
(constructed $o% Tx) om T:*
Solving the problem Z(T* vm, %ex(1,A)

o

we caleulate [ Mc; (), M) fo2 e e7;*
Thas, we gel Yi;()) for e €7




A,- procedure. For each v, € V(1) the functions My()\) are given.
Indeed, if v, € VW) N T, then My (X) are given a priori, and if
vk € VI \ T, then My()\) were calculated on the previous steps.

1) For each edge e, € £, we solve IP(k) and find gy (x) on e. If =1,
then Inverse Problem 1 is solved. If 1 > 1, we go on to the next step.

2) For each e, € £, we construct Ci(x, \), Sk(x, \), and calculate
Ul (L), v = 0,1 by (12): 9 (1.3) = GO N) + M(N)S (L),

3) Returning procedure. For each fixed v, € V*=1\ T and for any fixed

ek, & € R(vm), i # k, we consider the tree T} := T? U {e;} with the root
Vm. Solving the problem Z(T!, vim, ¥xk(1, \)), we calculate the transition

matrix [M,%-(/\), /\/I,:(lj()\)] forej € T

4) For each fixed v, € V=D \ T we calculate the Weyl function M,,()\)
by (10), where ¢;(1, \) are constructed via (11) for v = 1.
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1) Sturm-Liouville operators on arbitrary compact graphs.
2) Sturm-Liouville operators on noncompact graphs.

3) Higher order differential operators on graphs.

4) Variable order differential operators on graphs.

5) Pencils of differential operators on graphs.

6) Differential operators with singularities on graphs.
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