Yurko V. A.

Saratov State University

Method of spectral mappings in the inverse problem theory

Sturm-Liouville operators on a finite interval. Consider the BVP *L*:

$$\ell y := -y'' + q(x)y = \lambda y, \ 0 < x < \pi, \quad q(x) \in L(0, \pi), \tag{1}$$

$$U(y) := y'(0) - hy(0) = 0, \quad V(y) := y'(\pi) + Hy(\pi) = 0.$$

Let $\varphi(x,\lambda)$, $S(x,\lambda)$ be the solutions of Eq. (1) with the conditions $\varphi(0,\lambda)=1,\ \varphi'(0,\lambda)=h,\ S(0,\lambda)=0,\ S'(0,\lambda)=1.$ Denote

$$\Delta(\lambda) := V(\varphi), \quad \{\lambda_n\}_{n\geq 0}, \quad \alpha_n = \int_0^\pi \varphi^2(x,\lambda_n) dx.$$

IP 1. (V. Marchenko, 1950). Given $\{\lambda_n, \alpha_n\}$, construct q, h, H. Consider the BVP L_1 for (1) with the conditions y(0) = V(y) = 0.

$$\delta(\lambda) := V(S), \quad \{\nu_n\}_{n \geq 0}.$$

IP 2. (G. Borg, 1946). Given $\{\lambda_n, \nu_n\}$, construct q, h, H.

◆□ → ◆□ → ◆□ → ◆□ → ◆○○

3) The Weyl function. Let $\Phi(x,\lambda)$ be the solution of Eq.(1) with the conditions $U(\Phi)=1,\ V(\Phi)=0$. We set $M(\lambda):=\Phi(0,\lambda)$.

IP 3. Given $M(\lambda)$, construct q, h, H.

$$M(\lambda) = -\frac{\delta(\lambda)}{\Delta(\lambda)}, \ M(\lambda) = \sum_{n=0}^{\infty} \frac{1}{\alpha_n(\lambda - \lambda_n)}, \tag{2}$$

$$\Delta(\lambda) = \pi(\lambda_0 - \lambda) \prod_{n=1}^{\infty} \frac{\lambda_n - \lambda}{n^2}, \quad \delta(\lambda) = \prod_{n=0}^{\infty} \frac{\nu_n - \lambda}{(n+1/2)^2}.$$
 (3)

IP 3 is equivalent to IP 1 and IP 2.

Sturm-Liouville operators on the half-line. Consider the BVP *L*:

$$\ell y := -y'' + q(x)y = \lambda y, \ x > 0, \quad q(x) \in L(0, \infty),$$

$$U(y) := y'(0) - hy(0) = 0.$$
(4)

Let $\Phi(x, \lambda)$ be the solution of (4) under the conditions

$$U(\Phi) = 1, \quad \Phi(x, \lambda) = O(\exp(i\rho x)), \ x \to \infty,$$

where $\lambda = \rho^2$, $\operatorname{Im} \rho \geq 0$. Denote $M(\lambda) := \Phi(0, \lambda)$.

IP 4. Given $M(\lambda)$, construct q(x) and h.

$$M(\lambda) = \int_{-\infty}^{\infty} \frac{d\sigma(\mu)}{\lambda - \mu}.$$
 (5)

Transformation operator method: V.Marchenko, B.Levitan, 1950-51.

Let $\lambda = \rho^2$. The following representation is valid

$$\varphi(x,\lambda) = \cos \rho x + \int_0^x G(x,t) \cos \rho t \, dt, \tag{6}$$

$$q(x) = \frac{d}{dx} G(x, x), \quad h = G(0, 0).$$
 (7)

Case 1: finite interval. Take a model BVP \tilde{L} with $\tilde{q}=0, \ \tilde{h}=\tilde{H}=0$. Then $\tilde{\lambda}_n=n^2, \ n\geq 0$. Consider the function

$$F(x,t) = \sum_{n=0}^{\infty} \left(\frac{\cos \rho_n x \cos \rho_n t}{\alpha_n} - \frac{\cos nx \cos nt}{\tilde{\alpha}_n} \right)$$

$$= \frac{1}{2\pi i} \int_{\gamma} \cos \rho x \cos \rho t \hat{M}(\lambda) d\lambda, \quad \hat{M} := M - \tilde{M}, \tag{8}$$

 $\tilde{\alpha}_n = \pi/2 \ (n>0); \tilde{\alpha}_0 = \pi; \ \gamma \ \text{is a contour encircling the spectra of } L \ \text{and} \ \tilde{L}.$

17 июня 2023 г. 5 / 37

Theorem 2. For each fixed x, the kernel G(x, t) from representation (6) satisfies the linear integral equation

$$G(x,t) + F(x,t) + \int_0^x G(x,s)F(s,t) ds = 0, 0 < t < x.$$
 (9)

Case 2: the half-line. Take a model BVP \tilde{L} with $\tilde{q}(x)=0,\ \tilde{h}=0.$ Consider the function

$$F(x,t) = \frac{1}{2\pi i} \int_{\gamma} \cos \rho x \cos \rho t \hat{M}(\lambda) d\lambda, \tag{10}$$

where γ is a contour encircling the spectra of L and \tilde{L} . Theorem 2 remains true with (10) instead of (8).

In both cases q(x) and h can be constructed by (7).

4□ > 4□ > 4 = > 4 = > = 90

17 июня 2023 г.

6 / 37

Method of Spectral Mappings: V. Yurko, 1985-1986

- [1] Yurko V.A. Recovery of nonselfadjoint differential operators on the half-line from the Weyl matrix. Matem. Sbornik, vol.182, no.3 (1991), 431-456 (Math. USSR Sbornik, vol.72, no.2 (1992), 413-438).
- [2] Yurko V.A., Inverse Spectral Problems for Differential Operators and their Applications, Gordon and Breach, New York, 1998.
- [3] Freiling G. and Yurko V.A., Inverse Sturm-Liouville Problems and their Applications, NOVA Science Publishers, New York, 2001.
- [4] Yurko V.A., Method of Spectral Mappings in the Inverse Problem Theory, Inverse and III-posed Problems Series. VSP, Utrecht, 2002.
- [5] Yurko V.A., Introduction to the theory of inverse spectral problems. Moscow, Fizmatlit, 2007, 384pp.

Higher-order differential equations:

$$\ell y := y^{(n)} + \sum_{k=0}^{n-2} p_k(x) y^{(k)} = \lambda y, \ n > 2.$$
 (11)

17 июня 2023 г. 7 / 37

Method of Spectral Mappings for Sturm-Liouville operators

Let the Weyl function $M(\lambda)$ be given. Choose a model BVP \tilde{L} with \tilde{q} and \tilde{h} (for example, one can take $\tilde{q}(x)=0,\ \tilde{h}=0 \ \to \ \tilde{\varphi}(x,\lambda)=\cos\rho x$). Denote

$$\tilde{r}(x,\lambda,\mu) = \frac{\langle \tilde{\varphi}(x,\lambda), \tilde{\varphi}(x,\mu) \rangle}{\lambda - \mu} \hat{M}(\mu) = \int_0^x \tilde{\varphi}(t,\lambda) \tilde{\varphi}(t,\mu) dt \hat{M}(\mu),$$

where $\hat{M} := M - \tilde{M}, \ \langle y, z \rangle := yz' - y'z.$

Theorem 3. The following relation holds

$$\tilde{\varphi}(x,\lambda) = \varphi(x,\lambda) + \frac{1}{2\pi i} \int_{\gamma} \tilde{r}(x,\lambda,\mu) \varphi(x,\mu) \, d\mu. \tag{12}$$

Here γ is a contour encircling the spectra.

Consider the Banach space $C(\gamma)$ of continuous bounded functions $z(\lambda), \ \lambda \in \gamma$, with the norm $||z|| = \sup |z(\lambda)|$.

Theorem 4. For each x, Eq. (12) has a unique solution $\varphi(x,\lambda) \in C(\gamma)$.

Theorem 5. The following relations hold

$$q(x) = \tilde{q}(x) - 2\varepsilon_0'(x), \ h = \tilde{h} - \varepsilon_0(0),$$

$$\varepsilon_0(x) := \frac{1}{2\pi i} \int_{\Omega} \tilde{\varphi}(x,\mu) \varphi(x,\mu) \hat{M}(\mu) \, d\mu.$$
(13)

Algorithm 1. Let the function $M(\lambda)$ be given.

- (1) Choose L and construct $\tilde{\varphi}$ and \tilde{r} .
- (2) Find $\varphi(x,\lambda)$ by solving equation (12).
- (3) Construct q(x) and h via (13).

17 июня 2023 г.

9 / 37

Proof of Theorem 3. Consider the functions

$$P_{11} = \varphi \tilde{\Phi}' - \Phi \tilde{\varphi}', \quad P_{12} = \Phi \tilde{\varphi} - \varphi \tilde{\Phi}. \tag{14}$$

Since $\varphi \Phi' - \Phi \varphi' = 1$, it follows from (14) that

$$\varphi(x,\lambda) = P_{11}(x,\lambda)\tilde{\varphi}(x,\lambda) + P_{12}(x,\lambda)\tilde{\varphi}'(x,\lambda).$$

One has

$$P_{1k}(x,\lambda) - \delta_{1k} = O(\rho^{-1}), \ |\lambda| \to \infty, \ \lambda = \rho^2, \tag{15}$$

where δ_{jk} is the Kronecker symbol. For definiteness we consider the case of the half-line. For a finite interval the arguments are similar.

17 июня 2023 г. 10 / 37

Denote by Λ the discrete spectrum; it is a bounded set. In the λ - plane we consider the contour $\gamma=\gamma'\cup\gamma''$ (with counterclockwise circuit), where γ' is a bounded closed contour encircling the set $\Lambda\cup\tilde{\Lambda}\cup\{0\}$, and γ'' is the two-sided cut along the arc $\{\lambda:\ \lambda>0,\ \lambda\notin\inf\gamma'\}$. Denote $J_{\gamma}=\{\lambda:\ \lambda\notin\gamma\cup\inf\gamma'\}$. Consider the contour $\gamma_R=\gamma\cap\{\lambda:\ |\lambda|\le R\}$ with counterclockwise circuit, and also consider the contour $\gamma_R^0=\gamma_R\cup\{\lambda:\ |\lambda|=R\}$ with clockwise circuit. By Cauchy's integral formula,

$$P_{1k}(x,\lambda) - \delta_{1k} = \frac{1}{2\pi i} \int_{\gamma_R^0} \frac{P_{1k}(x,\mu) - \delta_{1k}}{\lambda - \mu} d\mu,$$

where $\lambda \in \operatorname{int} \gamma_R^0$. Using (15) we get

$$\lim_{R\to\infty}\int_{|\mu|=R}\frac{P_{1k}(x,\mu)-\delta_{1k}}{\lambda-\mu}\,d\mu=0\quad\rightarrow\quad$$

4□ > 4□ > 4□ > 4□ > 4□ > 3□

17 июня 2023 г. — 11 / 37

$$P_{1k}(x,\lambda) = \delta_{1k} + \frac{1}{2\pi i} \int_{\gamma} \frac{P_{1k}(x,\mu)}{\lambda - \mu} d\mu, \ \lambda \in J_{\gamma}.$$

Since $\varphi = P_{11}\tilde{\varphi} + P_{12}\tilde{\varphi}'$, one has

$$\varphi(x,\lambda) = \tilde{\varphi}(x,\lambda) + \frac{1}{2\pi i} \int_{\gamma} \frac{\tilde{\varphi}(x,\lambda)P_{11}(x,\mu) + \tilde{\varphi}'(x,\lambda)P_{12}(x,\mu)}{\lambda - \mu} d\mu.$$

Taking (14) into account we get

$$\varphi(x,\lambda) = \tilde{\varphi}(x,\lambda) + \frac{1}{2\pi i} \int_{\gamma} (\tilde{\varphi}(x,\lambda)(\varphi(x,\mu)\tilde{\Phi}'(x,\mu) - \Phi(x,\mu)\tilde{\varphi}'(x,\mu)) +$$

$$\tilde{\varphi}'(x,\lambda)(\Phi(x,\mu)\tilde{\varphi}(x,\mu)-\varphi(x,\mu)\tilde{\Phi}(x,\mu))\frac{d\mu}{\lambda-\mu}.$$

Using the relations $\Phi = S + M\varphi$, $\tilde{\Phi} = \tilde{S} + \tilde{M}\tilde{\varphi}$, we arrive at (12), since the terms with $S(x, \mu)$ vanish by Cauchy's theorem.

◆ロト ◆個ト ◆豆ト ◆豆ト ・豆 ・ かなぐ

Higher-order operators, 1985-1986. Consider the equation

$$\ell y := y^{(n)} + \sum_{k=0}^{n-2} p_k(x) y^{(k)} = \lambda y, \ n > 2.$$
 (1)

Let $\lambda=\rho^n$. The ρ - plane can be partitioned into sectors S_{ν} of angle $\frac{\pi}{n}$ $\left(S_{\nu}:=\{\rho: \arg \rho\in \left(\frac{\nu\pi}{n},\frac{(\nu+1)\pi}{n}\right)\},\ \nu=\overline{0,2n-1}\right)$ in each of which the roots R_1,R_2,\ldots,R_n of the equation $R^n-1=0$ can be numbered in such a way that

$$Re(\rho R_1) < \ldots < Re(\rho R_n), \quad \rho \in S_{\nu}.$$

Let $\Phi_m(x,\lambda)$, $m=\overline{1,n}$, be the solutions of Eq. (1) with the conditions

$$\Phi_m^{(n-\xi)}(0,\lambda)=\delta_{\xi m}, \quad \xi=\overline{1,m},$$

$$\Phi_m(x,\lambda) = O(\exp(\rho R_m x)), \quad x \to \infty, \quad \rho \in S_{\nu}.$$

◆ロト ◆回ト ◆恵ト ◆恵ト 恵 めらで

17 июня 2023 г. 13 / 37

Denote $M(\lambda) = [M_{mk}(\lambda)]_{m,k=\overline{1,n}}, \ M_{mk}(\lambda) = \Phi_m^{(n-k)}(0,\lambda)$. The matrix $M(\lambda)$ is called the Weyl matrix for ℓ .

Example: n=4.

$$\begin{split} &\Phi_{1}'''(0,\lambda)=1,\ \Phi_{1}(x,\lambda)=O(\exp(\rho R_{1}x)),\\ &\Phi_{2}'''(0,\lambda)=0,\ \Phi_{2}''(0,\lambda)=1,\ \Phi_{2}(x,\lambda)=O(\exp(\rho R_{2}x)),\\ &\Phi_{3}'''(0,\lambda)=\Phi_{3}''(0,\lambda)=0,\ \Phi_{3}'(0,\lambda)=1,\ \Phi_{3}(x,\lambda)=O(\exp(\rho R_{3}x)),\\ &\Phi_{4}'''(0,\lambda)=\Phi_{4}''(0,\lambda)=\Phi_{4}'(0,\lambda)=0,\ \Phi_{4}(0,\lambda)=1, \end{split}$$

$$M(\lambda) = \begin{bmatrix} 1 & M_{12}(\lambda) & M_{13}(\lambda) & M_{14}(\lambda) \\ 0 & 1 & M_{23}(\lambda) & M_{24}(\lambda) \\ 0 & 0 & 1 & M_{34}(\lambda) \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

<ロト <個 > < 重 > < 重 > のQで

17 июня 2023 г. 14 / 37

Inverse problem. Given the Weyl matrix $M(\lambda)$, construct ℓ .

Let $\Gamma_{\pm}:=\{\lambda:\ \pm\lambda\geq 0\},$ and Π_{\pm} be the λ - plane with a cut along $\Gamma_{\pm}.$

Theorem 1. The Weyl matrix $M(\lambda)$ has the following properties:

- 1) $M_{mk}(\lambda) = \delta_{mk}, m \geq k$.
- 2) The functions $M_{mk}(\lambda)$ are analytic in $\Pi_{(-1)^{n-m}}$ with the exception of at most countable bounded sets Λ'_{mk} of poles and are continuous in $\bar{\Pi}_{(-1)^{n-m}}$ with the exception of bounded sets Λ_{mk} .
- 3) $M_{mk}(\lambda) = O(\rho^{m-k})$ as $|\lambda| \to \infty$.
- 4) The functions $(M_{mk} M_{m,m+1}M_{m+1,k})(\lambda)$ are analytic for $\lambda \in \Gamma_{(-1)^{n-m}} \setminus \Lambda$, where $\Lambda = \bigcup_{m,k} \Lambda_{mk}$.

17 июня 2023 г. 15 / 37

Let $M(\lambda)$ be the Weyl matrix for ℓ . Take a model operator $\tilde{\ell}$. In the λ -plane we consider the contour $\gamma = \gamma_{-1} \cup \gamma_0 \cup \gamma_1$ (with a counterclockwise circuit), where γ_0 is a bounded closed contour encircling the set $\Lambda \cup \tilde{\Lambda} \cup \{0\}$ (i.e. $\Lambda \cup \tilde{\Lambda} \cup \{0\} \subset \text{int} \gamma_0$), and $\gamma_{\pm 1}$ is a two-sided cut along the ray $\{\lambda: \ \pm \lambda > 0, \ \lambda \notin \text{int} \gamma_0\}$. Denote

$$\varphi(x,\lambda) = [\chi((-1)^{n-k+1}\lambda)\Phi_k(x,\lambda)]_{k=\overline{2,n}},$$

where $\chi_{\pm 1}(\lambda) = 1$ for $\lambda \in \gamma_0 \cup \gamma_{\pm 1}, \ \chi_{\pm 1}(\lambda) = 0$ for $\lambda \in \gamma_{\mp 1}$.

Theorem 2. For each fixed $x \ge 0$, the vector $\varphi(x, \lambda)$ is a solution of the linear singular integral equation

$$\tilde{\varphi}(x,\lambda) = Q(\lambda)\varphi(x,\lambda) + \frac{1}{2\pi i} \int_{\gamma} \frac{H(x,\lambda,\mu)}{\mu - \lambda} \varphi(x,\mu) \, d\mu, \ \lambda \in \gamma,$$
 (2)

where $Q(\lambda)$ and $H(x, \lambda, \mu)$ are constructed from $\tilde{\ell}$ and $M(\lambda)$.

◆□▶ ◆□▶ ◆■▶ ◆■▶ ● りへ@

16 / 37

17 июня 2023 г.

Denote $\Omega(x,\lambda)=\operatorname{diag}\left[\rho^{n-k}\exp(-\rho R_k x)\right]_{k=\overline{2,n}},$ $\gamma''=\{\lambda:\ \lambda\in\gamma_1\cup\gamma_{-1},\ d(\lambda,\gamma_0)\geq\alpha_0>0\},\ \gamma'=\gamma\setminus\gamma'',\ \text{where}\ d(\lambda,\gamma_0):=\inf|\lambda-\mu|,\ \mu\in\gamma_0.$ We introduce the Banach space $B=L_2^{n-1}(\gamma')\oplus L_\infty^{n-1}(\gamma'')$ of vector-valued functions $z(\lambda)=[z_j(\lambda)]_{j=\overline{1,n-1}},$ $\lambda\in\gamma$ with the norm

$$||z||_B = \sum_{j=1}^{n-1} (||z_j||_{L_2(\gamma')} + ||z_j||_{L_\infty(\gamma'')}).$$

Theorem 3. For each $x \geq 0$, equation (2) has a unique solution in the class $\Omega(x,\lambda)\varphi(x,\lambda) \in B$, and $\sup_{x} \|\Omega(x,\lambda)\varphi(x,\lambda)\|_{B} < \infty$.

Algorithm. 1) Choose a model operator $\tilde{\ell}$.

- 2) Construct the matrices $H(x, \lambda, \mu)$, $Q(\lambda)$, $\tilde{\varphi}(x, \lambda)$, $x \geq 0$, $\lambda, \mu \in \gamma$.
- 3) Find $\varphi(x,\lambda), x \ge 0, \lambda \in \gamma$ by solving the main equation (2).
- 4) Construct ℓ .

17 июня 2023 г. 17 / 37

Inverse problems for systems: V. Yurko, 2004-2005.

Consider the system

$$\ell Y(x) := Q_0 Y'(x) + Q(x)Y(x) = \rho Y(x), \quad x > 0, \tag{1}$$

 $Q_0=\operatorname{diag}[q_k]_{k=\overline{1,n}},\ Q(x)=[q_{kj}(x)]_{k,j=\overline{1,n}},\ q_{kk}(x)\equiv 0.$ Let $\beta_k=1/q_k.$ The ρ - plane can be partitioned into sectors $S_j=\{\rho:\arg\rho\in(\theta_j,\theta_{j+1})\},\ j=\overline{0,2r-1},\ 0\leq\theta_0<\theta_1<\ldots<\theta_{2r-1}<2\pi,$ in each of which there exists a permutation $i_k=i_k(S_j)$ of the numbers $1,\ldots,n,$ such that for the numbers $R_k=R_k(S_j)$ of the form $R_k=\beta_{i_k}$ one has

$$\operatorname{Re}(\rho R_1) < \ldots < \operatorname{Re}(\rho R_n), \quad \rho \in S_j.$$
 (2)

Let the matrix $h = [h_{\xi\nu}]_{\xi,\nu=\overline{1,n}}$, det $h \neq 0$ be given. We introduce the linear forms $U(Y) = [U_{\xi}(Y)]_{\xi=\overline{1,n}}^T$ by U(Y) = hY(0).

17 июня 2023 г. 18 / 37

Denote $\Omega^0_{mk}(j_1,\ldots,j_m)=\det[h_{\xi,j_\nu}]_{\xi=\overline{1,m-1},k:\nu=\overline{1,m}}$. Let

$$\Omega_{mm}^{0}(i_1,\ldots,i_m)\neq 0, \ m=\overline{1,n-1}, \ j=\overline{0,2r-1}.$$

This condition is called the information condition for $L = (\ell, U)$.

Let $\Phi_m(x,\rho) = [\Phi_{km}(x,\rho)]_{k=\overline{1,n}}^T$, $m=\overline{1,n}$, be solutions of system (1) under the conditions

$$U_{\xi}(\Phi_m) = \delta_{\xi m}, \ \xi = \overline{1, m},$$

$$\Phi_m(x,\rho) = O(\exp(\rho R_m x)), \ x \to \infty, \ \rho \in S_j.$$

Let
$$M_{m\xi}(\rho) = U_{\xi}(\Phi_m)$$
, $M(\rho) = [M_{m\xi}(\rho)]_{m,\xi=\overline{1,n}}$.

Inverse problem. Given $M(\rho)$, construct Q and h.

Theorem 1. The specification of the Weyl matrix $M(\rho)$ uniquely determines the potential Q(x) and the matrix h.

17 июня 2023 г.

19 / 37

Denote
$$\Gamma_j = \{\rho : \text{arg } \rho = \theta_j\}, \ j = \overline{0, 2r - 1}, \ \Gamma_{2r} := \Gamma_0, \ \Sigma = \bigcup_{j=0}^{2r-1} S_j$$
 - the ρ -plane without the cuts along the rays Γ_j . Let $\Gamma_i^{\pm} = \{\rho : \text{arg } \rho = \theta_j \pm 0\}$ be the sides of the cuts.

Fix $j = \overline{0, 2r - 1}$. For $\rho \in \Gamma_j$, strict inequalities from (2) in some places become equalities. Let $m_i = m_i(j)$, $p_i = p_i(j)$, $i = \overline{1,s}$ be such that for $\rho \in \Gamma_j$: $\text{Re}(\rho R_{m_i-1}) < \text{Re}(\rho R_{m_i}) = \ldots = \text{Re}(\rho R_{m_i+p_i}) < \text{Re}(\rho R_{m_i+p_i+1})$, $R_k = R_k(S_j)$. Let $N_j := \{m : m = \overline{m_1, m_1 + p_1 - 1}, \ldots, \overline{m_s, m_s + p_s - 1}\}$, $J_m := \{j : m \in N_j\}$, $\gamma_m = \bigcup_{j \in J_m} \Gamma_j$, and let $\Sigma_m = \mathbf{C} \setminus \gamma_m$ be the ρ - plane

without the cuts along the rays from γ_m . Clearly, the domain $\Sigma_m = \bigcup_{\nu} S_{m\nu}$ consists of the sectors $S_{m\nu}$, each of which is a union of several sectors S_j with the same set $\{R_{\xi}\}_{\xi=\overline{1,m}}$.

17 июня 2023 г. 20 / 37

We introduce the functions $B^{\xi}_{mk}(\rho)$ by

$$B_{mk}^{0}(\rho) = M_{mk}(\rho), \ B_{mk}^{\xi}(\rho) = B_{mk}^{\xi-1}(\rho) - B_{m,m+\xi}^{\xi-1}(\rho)B_{m+\xi,k}^{0}(\rho), \xi = \overline{0, n-2}, \ m = \overline{1, n-\xi-1}, \ k = \overline{m+\xi+1, n}.$$

Denote by \mathcal{M} the set of functions $M(\rho) = [M_{mk}(\rho)]_{m,k=\overline{1,n}}$ such that:

- 1) $M_{mk}(\rho) \equiv \delta_{mk}$ for $m \geq k$;
- 2) The function $M_{mk}(\rho)$, k>m, is analytic in Σ_m with the exception of an at most countable bounded set Λ_m' of poles, and are continuous in $\overline{\Sigma}_m$ with the exception of a bounded set Λ_m ;
- 3) The function $B_{\nu k}^{m-\nu}(\rho)$ is analytic on

$$\Gamma_j \setminus \Lambda'_m, j \notin J_m, 1 \leq \nu \leq m \leq n-1, m+1 \leq k \leq n;$$

4)
$$M_{mk}(\rho) = \mu_{mk}^{0}(S_{j}) + O(\rho^{-1}), \ \mu_{mk}^{0}(S_{j}) = \frac{\Omega_{mk}^{0}(i_{1}, \ldots, i_{m})}{\Omega_{mm}^{0}(i_{1}, \ldots, i_{m})}, \ \rho \in \overline{S}_{j}.$$

Theorem 2. If $M(\rho)$ is the Weyl matrix for a pair $L = (\ell, U)$, then $M(\rho) \in \mathcal{M}$.

メロト (個) (注) (注) (注) (2) (2)

17 июня 2023 г. 21 / 37

Denote $\Lambda:=\Lambda_1\cup\ldots\cup\Lambda_{n-1}$. Let $M(\rho)$ be the Weyl matrix for $L=(\ell,U)$. We choose a pair $\tilde{L}=(\tilde{\ell},\tilde{U})$ such that $M(\rho)-\tilde{M}(\rho)=O(\rho^{-1}),\ |\rho|\to\infty$. In the ρ - plane we consider the contour $\omega^*:=\omega^0\cup\omega^1$, where ω^0 is a bounded closed contour encircling the set $\Lambda\cup\tilde{\Lambda}\cup\{0\}$ (i.e.

 $\Lambda \cup \tilde{\Lambda} \cup \{0\} \subset \operatorname{int} \omega^0$), and $\omega^1 = \bigcup_{j=0}^{2r-1} \omega_j^1$, $\omega_j^1 := \{\rho : \rho \in \Gamma_j \setminus \omega^0\}$. Denote

$$\varphi(x,\rho) = \begin{cases} [\Phi^+(x,\rho), \Phi^-(x,\rho)], & \rho \in \omega^1, \\ \Phi(x,\rho), & \rho \in \omega^0, \end{cases}$$

where $\Phi^{\pm} := \Phi_{|\omega^{\pm}}, \ \omega^{\pm} = \bigcup_{j=0}^{2r-1} \omega_j^{\pm}, \ \omega_j^{\pm} = \Gamma_j^{\pm} \setminus \operatorname{int} \omega^0.$

We consider the Banach space $\mathcal{B}_p := \{f(\rho): f(\rho)\rho^{-1} \in L_p(\omega^*)\}, \ p > 1$ with the norm $\|f\|_{\mathcal{B}_p} := \|f(\rho)\rho^{-1}\|_{L_p(\omega^*)}$.

17 июня 2023 г. 22 / 37

Theorem 3. Let $M(\rho)$ be the Weyl matrix for the pair $L = (\ell, U)$. The following relation is valid for $\rho \in \omega^*$:

$$\tilde{\varphi}(x,\rho) = \varphi(x,\rho)S(\rho) + \frac{1}{2\pi i} \int_{\omega^*} \varphi(x,\mu)r(x,\mu,\rho) \, d\mu, \tag{3}$$

where $S(\rho)$ and $r(x, \rho, \mu)$ are constructed from $\tilde{\ell}$ and $M(\rho)$.

For each fixed $x \ge 0$, equation (3) has the unique solution $\varphi(x,\rho)$ in the class $\varphi(x,\rho)D(x,\rho) \in \mathcal{B}_p$ for each p>1; and $\sup_{x>0} \|\varphi(x,\rho)D(x,\rho)\|_{\mathcal{B}_p} < \infty.$

Algorithm. 1) Choose a model pair $\tilde{L} = (\tilde{\ell}, \tilde{U})$.

- 2) Construct the matrices $r(x, \rho, \mu), S(\rho), \tilde{\varphi}(x, \rho)$.
- 3) Find $\varphi(x, \rho)$ by solving the main equation (3).
- 4) Construct Q(x) and h.

Theorem 4. For a matrix $M(\rho) \in \mathcal{M}$ to be the Weyl matrix for a pair $L = (\ell, U)$, it is necessary and sufficient that the following conditions are fulfilled:

- 1) (asymptotics) there exists a pair $\tilde{L}=(\tilde{\ell},\tilde{U})$ such that $M(\rho) - \tilde{M}(\rho) = O(\rho^{-1}), |\rho| \to \infty, holds$:
- 2) (condition P) for each fixed $x \ge 0$, the main equation (3) has a unique solution $\varphi(x,\rho)$ in the class $\varphi(x,\rho)D(x,\rho)\in\mathcal{B}_p$, p>1, and $\sup \|\varphi(x,\rho)D(x,\rho)\|_{\mathcal{B}_n}<\infty;$
- 3) $\varepsilon(x) \in W$, where

$$\varepsilon(x) = \frac{1}{2\pi i} \int_{\omega} \left(\Phi(x,\mu) A_0(\mu) \tilde{\Phi}^*(x,\mu) Q_0 - Q_0 \Phi(x,\mu) A_0(\mu) \tilde{\Phi}^*(x,\mu) \right) d\mu.$$

Under these conditions the pair $L = (\ell, U)$ is constructed by the formulae

$$Q(x) = \tilde{Q}(x) + \varepsilon(x), \quad h = \tilde{h}.$$

Inverse Spectral Problems for Sturm-Liouville Operators on Graphs

Yurko V.A. Inverse Problems, 21, no.3 (2005), 1075-1086.

Let T be a compact, simply connected rooted tree in $\mathbf{R}^{\mathbf{m}}$ with the root v_0 , the set of vertices $V = \{v_0, \dots, v_r\}$ and the set of edges $\mathcal{E} = \{e_1, \dots, e_r\}$. We suppose that the length of each edge is equal to 1. For two points $a, b \in T$ we will write $a \leq b$ if a lies on a unique simple path connecting the root v_0 with b; let |b| stand for the length of this path. We will write a < b if $a \leq b$ and $a \neq b$. If a < b we denote $[a, b] := \{z \in T : a \leq z \leq b\}$. If e = [v, w] is an edge, we call v its initial point, v its end point and say that v emanates from v and terminates at v. We denote by v be the set of edges emanating from v.

17 июня 2023 г. 25 / 37

 $V = \{v_0,...,v_g\}$ are vertices, i.e. R = 9. $\Gamma = \{v_0,...,v_s\}$ are boundary vertices, i.e. $\beta = 5$ 6 = 4 is the Reight of the tree

For any $v \in V$ the number |v| is called the order of v. For $e \in \mathcal{E}$ its order is defined as the order of its end point. The number $\sigma := \max_{i=1,r} |v_i|$ is called the height of the tree T. Let $V^{(\mu)} := \{ v \in V : |v| = \mu \}, \ \mu = \overline{0, \sigma}$ be the set of vertices of order μ , and let $\mathcal{E}^{(\mu)} := \{ e \in \mathcal{E} : e = [v, w], v \in V^{(\mu-1)}, w \in V^{(\mu)} \}, \mu = \overline{1, \sigma} \text{ be the set }$ of edges of order μ . Each edge $e \in \mathcal{E}$ is viewed as a segment [0, 1] and is parameterized by the parameter $x \in [0, 1]$. We choose the following orientation on each edge $e = [v, w] \in \mathcal{E}$: if $z = z(x) \in e$, then z(0) = w, z(1) = v, i.e. x = 0 corresponds to the end point w. We enumerate the vertices v_i as follows: $\Gamma := \{v_0, v_1, \dots, v_p\}$ are boundary vertices, $v_{p+1} \in V^{(1)}$, and $v_i, j > p+1$ are enumerated in order of increasing $|v_i|$. We enumerate the edges similarly, namely: $e_j = [v_{j_k}, v_j]$, $j = \overline{1, r}, j_k < j$. In particular, $E := \{e_1, \dots, e_{p+1}\}$ is the set of boundary edges; $e_{p+1} = [v_0, v_{p+1}]$ is called the rooted edge of T.

17 июня 2023 г. 26 / 37

An integrable function Y on T may be represented as a vector $Y(x) = [y_j(x)]_{j \in J}, x \in [0,1]$, where $J := \{j : j = \overline{1,r}\}$, and the function $y_j(x)$ is defined on the edge e_j . Let $q = [q_j]_{j \in J}$ is an integrable real-valued function on T which is called the potential. Consider the Sturm-Liouville equation on T:

$$-y_j''(x) + q_j(x)y_j(x) = \lambda y_j(x), \quad x \in [0, 1], \ j \in J, \tag{1}$$

 $y_j(x), y_j'(x) \in AC[0,1]$ and satisfy the following 2r - p - 1 matching conditions in each internal vertex v_k , $k = \overline{p+1,r}$:

$$y_j(1) = y_k(0) \text{ for all } e_j \in R(v_k), \quad \sum_{e_j \in R(v_k)} y_j'(1) = y_k'(0).$$
 (2)

Let L_0 be the boundary value problem (BVP) defined by (1)-(3), where

$$Y_{|v_i} = 0, \quad j = \overline{0, p}. \tag{3}$$

17 июня 2023 г. 27 / 37

Let L_k , $k = \overline{1, p}$, be the BVP for (1) satisfying (2) and

$$y'_k(0) = 0, \quad Y_{|v_j|} = 0, \quad j = \overline{0, p} \setminus k.$$
 (4)

Let $\{\lambda_{lk}\}_{l\geq 1}$, $k=\overline{0,p}$, be the eigenvalues of L_k of the form (1)-(3) for k=0, and (1), (2), (4) for $k=\overline{1,p}$, respectively.

Let $\Psi_k(x,\lambda) = [\psi_{kj}(x,\lambda)]_{j\in J}$, $k = \overline{0,p}$, be solutions of equation (1) satisfying (2) and the boundary conditions

$$\Psi_{k\mid v_j} = \delta_{kj}, \quad j = \overline{0, \rho}. \tag{5}$$

Let $M(\lambda) = [M_k(\lambda)]_{k=\overline{1,p}}, M_k(\lambda) := \psi'_{kk}(0,\lambda).$

()

Inverse Problem 1. Given the Weyl vector M, construct q on T.

Inverse Problem 2. Given spectra $\{\lambda_{lk}\}_{l>1}$, $k=\overline{0,p}$, construct q on T.

17 июня 2023 г. 28 / 37

The Weyl functions $M_k(\lambda)$ are meromorphic in λ :

$$M_k(\lambda) = \frac{\Delta_k(\lambda)}{\Delta(\lambda)}, \quad k = \overline{1, p},$$

where $\Delta(\lambda)$ and $\Delta_k(\lambda)$ are the characteristic functions for L_0 and L_k , respectively.

Let α_{lk} be the residues of $M_k(\lambda)$ at the poles λ_{l0} .

The data $S := \{\lambda_{l0}, \alpha_{lk}\}_{l>1, k=\overline{1,p}}$ are called the spectral data for L_0 .

Inverse Problem 3. Given S, construct the potential q on T.

Local inverse problem. Fix $k = \overline{1, p}$, and consider the following auxiliary inverse problem on the edge e_k :

IP(k). Given $M_k(\lambda)$, construct $q_k(x)$, $x \in [0,1]$.

Theorem 1. If $M_k(\lambda) = \tilde{M}_k(\lambda)$, then $q_k(x) = \tilde{q}_k(x)$ a.e. on [0,1]. Thus, the specification of the Weyl function M_k uniquely determines the potential q_k on the edge e_k .

Using the method of spectral mappings for the Sturm-Liouville operator on the edge e_k one can get a constructive procedure for the solution of the local inverse problem IP(k).

Pseudo-cutting procedure!

-()

Let $C_j(x,\lambda)$, $S_j(x,\lambda)$, $j \in J$, $x \in [0,1]$ be solutions of Eq. (1) on the edge e_j under the conditions $C_j(0,\lambda) = S_j'(0,\lambda) = 1$, $C_j'(0,\lambda) = S_j(0,\lambda) = 0$. Denote

$$M_{kj}^0(\lambda) = \psi'_{kj}(0,\lambda), \ M_{kj}^1(\lambda) = \psi_{kj}(0,\lambda), \ k = \overline{0,p}, \ j \in J.$$

Then

$$\psi_{kj}(x,\lambda) = M_{kj}^1(\lambda)C_j(x,\lambda) + M_{kj}^0(\lambda)S_j(x,\lambda), \tag{6}$$

$$\psi_{kk}(x,\lambda) = C_k(x,\lambda) + M_k(\lambda)S_k(x,\lambda), \quad k = \overline{1,p}.$$
 (7)

31 / 37

17 июня 2023 г.

Problem Z(**T**, $\mathbf{v_0}$, **a**). Let $\Psi = [\psi_j]_{j \in J}$ be the solution of equation (1) on \mathcal{T} satisfying (2) and the boundary conditions

$$\Psi_{|v_j|} = a\delta_{j0}, \quad v_j \in \Gamma, \ a \in \mathbf{C}.$$
 (8)

Denote $m_j^0(\lambda) = \psi_j'(0,\lambda), \ m_j^1(\lambda) = \psi_j(0,\lambda), \ j \in J$. Then

$$\psi_j(x,\lambda) = m_j^1(\lambda)C_j(x,\lambda) + m_j^0(\lambda)S_j(x,\lambda). \tag{9}$$

Substituting (9) into (2) and (8) we obtain a linear algebraic system for $m_j^0(\lambda), m_j^1(\lambda), j \in J$. The determinant of this system is $\Delta(\lambda)$. Solving this system by Kramer's rule we find the transition matrix $[m_j^0(\lambda), m_j^1(\lambda)]_{j \in J}$ for T with respect to v_0 and a.

4□ > 4□ > 4□ > 4 = > 4 = > = 90

17 июня 2023 г. 32 / 37

Fix $v_k \in V$. Denote $T_k^0 := \{z \in T : v_k < z\}, T_k := T \setminus T_k^0$. Let Γ_k be the set of boundary vertices of T_k . Denote $J_k := \{j : e_i \in T_k\}$. Fix $v_k \notin \Gamma$. Let $\Psi_k(x,\lambda) = [\psi_{kj}(x,\lambda)]_{j\in J_k}$ be the solution of (1)-(2), $\Psi_{k|v_i} = \delta_{kj}$ on $T_k, v_i \in \Gamma_k$; $M_k(\lambda) := \psi'_{kk}(0,\lambda), k = \overline{p+1,r}$ is the WF on T_k for v_k . **Lemma.** Fix $v_m \notin \Gamma$. Let $e_k = [v_m, v_k] \in R(v_m)$. Then

$$M_m(\lambda) = \frac{1}{\psi_{kk}(1,\lambda)} \sum_{e_j \in R(\nu_m)} \psi'_{kj}(1,\lambda). \tag{10}$$

Denote $M_{ki}^0(\lambda) = \psi'_{ki}(0,\lambda)$, $M_{ki}^1(\lambda) = \psi_{kj}(0,\lambda)$, $k = p+1, r, j \in J_k$. Then (6) and (7) hold for $k = \overline{1, r}$, $j \in J_k$, where $J_k = J$ for $k = \overline{1, p} \rightarrow$

$$\psi_{kj}^{(\nu)}(1,\lambda) = M_{kj}^{1}(\lambda)C_{j}^{(\nu)}(1,\lambda) + M_{kj}^{0}(\lambda)S_{j}^{(\nu)}(1,\lambda), \tag{11}$$

$$\psi_{kk}^{(\nu)}(1,\lambda) = C_k^{(\nu)}(1,\lambda) + M_k(\lambda) S_k^{(\nu)}(1,\lambda). \tag{12}$$

4 D > 4 B > 4 E > 4 E > 9 Q P 17 июня 2023 г.

33 / 37

$$M_{m}(\lambda) = \frac{1}{V_{KK}(l_{i}\lambda)} \sum_{e_{i} \in R(l_{i}m)} Y_{Ki}(l_{i}\lambda)$$

Solution of Inverse Problems 1-3. Let us formulate the uniqueness theorems for the solution of these inverse problems.

Theorem 2. The specification of the Weyl vector M uniquely determines the potential q on T.

Theorem 3. The specification of the spectra $\{\lambda_{lk}\}_{l\geq 1}$ of the boundary value problems L_k , $k=\overline{0,p}$ uniquely determines the potential q on T.

Theorem 4. The specification of the spectral data S uniquely determines the potential q on T.

Let the Weyl vector $M(\lambda) = [M_k(\lambda)]_{k=\overline{1,p}}$ for the tree T be given. The procedure for the solution of Inverse Problem 1 consists in the realization of the so-called A_{μ} - procedures successively for $\mu = \sigma, \sigma - 1, \ldots, 1$, where σ is the height of the tree T.

17 июня 2023 г. 34 / 37

 \mathbf{A}_{σ} - procedure. 1) For each edge $e_k \in \mathcal{E}^{(\sigma)}$, we solve the local inverse problem IP(k) and find $q_k(x)$, $x \in [0,1]$ on the edge e_k .

- 2) For each $e_k \in \mathcal{E}^{(\sigma)}$, we construct $C_k(x,\lambda), S_k(x,\lambda)$, and calculate $\psi_{kk}^{(\nu)}(1,\lambda), \ \nu=0,1, \text{ by } (12): \psi_{kk}^{(\nu)}(1,\lambda)=C_k^{(\nu)}(1,\lambda)+M_k(\lambda)S_k^{(\nu)}(1,\lambda).$
- 3) Returning procedure. For each fixed $v_m \in V^{(\sigma-1)} \setminus \Gamma$ and for all $e_i, e_k \in R(v_m), j \neq k$, we construct $M_{ki}^s(\lambda), s = 0, 1$, via

$$M_{kj}^{1}(\lambda) = 0, \ M_{kj}^{0}(\lambda) = \psi_{kk}(1,\lambda)/S_{j}(1,\lambda), \ e_{j}, e_{k} \in R(v_{m}), \ j \neq k.$$

4) For each $v_m \in V^{(\sigma-1)} \setminus \Gamma$ we find $M_m(\lambda)$ by (10), where $\psi'_{ki}(1,\lambda)$ are constructed via (11): $\psi'_{ki}(1,\lambda) = M^1_{ki}(\lambda)C'_i(1,\lambda) + M^0_{ki}(\lambda)S'_i(1,\lambda)$.

Now we carry out A_{μ} - procedures for $\mu = \overline{1, \sigma - 1}$ by induction. Fix $\mu = \overline{1, \sigma - 1}$, and suppose that $A_{\sigma}, \dots, A_{\mu+1}$ - procedures have been already carried out. Let us carry out A_{μ} - procedure.

> 4 D > 4 B > 4 E > 4 E > 9 Q P 17 июня 2023 г.

35 / 37

Ac-procedure

Um
$$\in$$
 V \downarrow Γ . Fix V_K .

Consider Ψ_K on e_j $(j \neq K)$.

 $\Psi_{Kj}(0,\lambda) = 0$, $\Psi_{Kj}(1,\lambda) = \Psi_{KK}(1,\lambda)$,

 $\Psi_{Kj}(x,\lambda) = M_{Kj}^1(x)C_j(x,\lambda) + M_{Kj}^0(x)S_j(x,\lambda) \rightarrow$
 $M_{Kj}^1(\lambda) = 0$, $j \neq K$
 $M_{Kj}^1(\lambda) = M_{Kj}^0(\lambda)S_j(1,\lambda) \rightarrow$
 $M_{Kj}^0(\lambda) = \frac{\Psi_{KK}(1,\lambda)}{S_i(1,\lambda)}$, $j \neq K$

Returning procedure

Let $V_m \in V^{(r-1)} \setminus \Gamma$. Fix $e_k \in R(V_m)$ and consider $Y_k = [Y_{kj}]_{j \in J_k}$. (constructed for T_k) on T_i^{-1} Solving the problem $Z(T_i^{-1}, V_m, Y_{kk}(I, \lambda))$ we calculate $[M_{kj}^{\circ}(\lambda), M_{kj}^{\circ}(\lambda)]$ for $e_j \in T_i^{-1}$. Thus, we get $Y_{kj}(x,\lambda)$ for $e_j \in T_i^{-1}$

 \mathbf{A}_{μ} - procedure. For each $v_k \in V^{(\mu)}$, the functions $M_k(\lambda)$ are given. Indeed, if $v_k \in V^{(\mu)} \cap \Gamma$, then $M_k(\lambda)$ are given a priori, and if $v_k \in V^{(\mu)} \setminus \Gamma$, then $M_k(\lambda)$ were calculated on the previous steps.

- 1) For each edge $e_k \in \mathcal{E}^{(\mu)}$, we solve IP(k) and find $q_k(x)$ on e_k . If $\mu = 1$, then Inverse Problem 1 is solved. If $\mu > 1$, we go on to the next step.
- 2) For each $e_k \in \mathcal{E}^{(\mu)}$, we construct $C_k(x,\lambda)$, $S_k(x,\lambda)$, and calculate $\psi_{kk}^{(\nu)}(1,\lambda)$, $\nu=0,1$, by (12): $\psi_{kk}^{(\nu)}(1,\lambda)=C_k^{(\nu)}(1,\lambda)+M_k(\lambda)S_k^{(\nu)}(1,\lambda)$.
- 3) Returning procedure. For each fixed $v_m \in V^{(\mu-1)} \setminus \Gamma$ and for any fixed $e_k, e_i \in R(v_m), i \neq k$, we consider the tree $T_i^1 := T_i^0 \cup \{e_i\}$ with the root v_m . Solving the problem $Z(T_i^1, v_m, \psi_{kk}(1, \lambda))$, we calculate the transition matrix $[M_{kj}^0(\lambda), M_{kj}^1(\lambda)]$ for $e_j \in T_i^1$.
- 4) For each fixed $v_m \in V^{(\mu-1)} \setminus \Gamma$ we calculate the Weyl function $M_m(\lambda)$ by (10), where $\psi'_{ki}(1,\lambda)$ are constructed via (11) for $\nu=1$.

4D > 4A > 4B > 4B > B 990

17 июня 2023 г. 36 / 37

- 1) Sturm-Liouville operators on arbitrary compact graphs.
- 2) Sturm-Liouville operators on noncompact graphs.
- 3) Higher order differential operators on graphs.
- 4) Variable order differential operators on graphs.
- 5) Pencils of differential operators on graphs.
- 6) Differential operators with singularities on graphs.