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This talk is based on the paper,

Fréderique Charles, Bruno Després, Alexandre Regge, Ricardo
Weder, The Magnetized Vlasov-Ampère System and the
Bernstein-Landau Paradox, J. Stat. Phys. 183 23, 2021, 57 pp.
The Vlasov-Poisson system for a plasma
We approximate the Newton equation for a very large number
of charged particles moving in an electromagnetic field by a
density function f (t , x , v) ≥ 0. We assume that x is the position
of the particles and that the motion is one dimensional along
the first coordinate axis. The velocity, v of the particles is two
dimensional, v = (v1, v2) ∈ R2. The density function is a
solution to the following Vlasov equation,

∂t f + v1∂x f + F · ∇v f = 0.
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We assume that the motion of the charged particles is a
2π-periodic oscillation. We look for solutions f (t , x , v), for
t ∈ R, x ∈ [0,2π], v = (v1, v2) ∈ R2, that are periodic in x , i.e.,
f (t ,0, v) = f (t ,2π, v).

The electromagnetic Lorentz force is given by

F(t , x) =
q
m

(E(t , x) + v × B(t ,x)) ,

We suppose that the magnetic field B(t ,x) = B0 is constant in
space-time, and that the two dimensional velocity v is
perpendicular to the constant magnetic field, i.e.,
B0 = (0,0,B0),B0 > 0. Moreover, we assume that the electric
field is directed along the first coordinate axis,
E(t , x) = (E(t , x),0,0).
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We adopt a convenient normalization adapted to electrons, that
is qref = −1 and mref = 1, where qref is the charge of the
electron, and mref is the mass of the electron.

The electric field satisfies the Gauss law,

∂xE(t , x) = 2π −
∫
R2

fdv ,

where 2π is the constant density of the heavy ions, that do not
move, and that we take equal to 2π for convenience. The term

−
∫
R2

f dv

is the charge density of the particles with charge −1.
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With these notations and normalizations we obtain the following

Vlasov-Poisson system,


∂t f + v1∂x f − E∂v1 f + ωc (−v2∂v1 + v1∂v2) f = 0,

∂xE(t , x) = 2π −
∫
R2

fdv .

We denote the cyclotron frequency by ωc := B0.
We retain the potential part of the electric field

E(t , x) = −∂xϕ(t , x),

where the potential ϕ(t , x) is a solution to the Poisson equation,

−∆ϕ = 2π −
∫
R2

fdv .

The potential is assumed to be periodic, ϕ(t ,0) = ϕ(t ,2π),
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The question that we address is: ? What is the long time
behaviour of the electric field?
Suppose that there is no magnetic field B0 = 0.
Landau Damping. L. Landau, J. Phys. USSR 10 n0 25 (1946).

lim
t→∞

E(x , t) = 0.
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This is a remarkable fundamental fact in plasma physics.
For large times all the energy of the electric field is transferred
to the electrons. There is no dissipation mechanism
The Landau damping has been extensively studied. Both in the
linear and nonlinear cases.
C. Mouhot and C. Villani Acta Math. 207 29-201 (2011)
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There is currently a lot of work being done mathematicians,
mathematical physicists and numerical analysts in the
Vlasov-Poisson equations, and other kinetic equations, in the
context of Landau damping and related fields.
An important motivation is the ITER project www.iter.org, a
large Tokamak that is been built in the south of France.
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You will hear more about Landau damping in the talk by B.
Després Friday.
However, what happens when the magnetic field B0 is different
from zero
Recall the Vlasov-Poisson system with magnetic field

∂t f + v1∂x f − E∂v1 f + ωc (−v2∂v1 + v1∂v2) f = 0,

∂xE(t , x) = 2π −
∫
R2

fdv .

E(t , x) = −∂xϕ(t , x),

−∆ϕ = 2π −
∫
R2

fdv .∫ 2π

0
E(t , x) dx = 0.
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The Bernstein-Landau paradox
The Landau damping disappears. The electric field is
oscillatory in time
I. B. Bernstein. Phys. Rev. 109 10-21 (1958)

The terminology Bernstein-Landau paradox was coined by
A. I. Sukhorukov and P. Stubbe, On the Bernstein-Landau
paradox, Physics of Plasmas 4, 2497, 1997.
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Linearization

We linearize the equations around a homogeneous Maxwellian
equilibrium state f0(v), where,

f0(v) := e
−v2

2 .

It corresponds to the expansion

f (t , x , v) = f0(v) + ε
√

f0(v)u(t , x , v) + O(ε2),

and

E(t , x) = E0 + εF (t , x) + O(ε2),

with a null reference electric field E0 = 0.
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Linearization

Keeping the terms up to linear in ε, one gets the linearized
magnetized Vlasov-Poisson system written as,

∂tu + v1∂xu + Fv1
√

f0 + ωc (−v2∂v1 + v1∂v2) u = 0,

∂xF = −
∫
R2

u
√

f0dv ,∫
[0,2π]

F = 0,

where in the third equation we have added the constraint that
the mean value of the electric field F is zero, as before.
Moreover, the electric field F (t , x), is obtained from a potential,

F (t , x) = −∂xϕ(t , x),

where the potential is periodic, ϕ(t ,0) = ϕ(t ,2π), and it solves
the Poisson equation,

−∆ϕ = −
∫
R2

u
√

f0dv .

Observe that we have the Gauss law,

∂xF (t , x) = ρ(t , x),

where ρ(t , x) is the charge density fluctuation of the
perturbation of the equilibrium state,

ρ(t , x) := −
∫
R2

u(t , x , v)
√

f0(v)dv .

Weder Bernstein-Landau Paradox



The study of the solutions to the magnetized Vlasov-Poisson
system is the standard method to analyze the dynamics of a
very large number of charged particles moving in the presence
of a constant external magnetic field. We now present an
alternate method to study this problem.
In the full Maxwell equations one of the equation is the Ampère
equation

∂tF =

∫
R2

v1 u
√

f0dv .

We consider here the following modified Ampère equation

∂tF = I∗
∫
R2

v1
√

f0 u dv ,

where I∗ is given by

I∗g(x) := g(x)− 1
2π

∫ 2π

0
g(y) dy .
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With this convention the magnetized Vlasov-Ampère system is
written as follows,

∂tu + v1∂xu + Fv1
√

f0 + ωc (−v2∂v1 + v1∂v2) u = 0,

∂tF = I∗
∫
R2

v1
√

f0 udv .

To the magnetized Vlasov-Ampère system we add following
conditions for Fini := F (0, ·) and uini = u(0, ·, ·) : the integral
constraint, ∫ 2π

0
Fini dx = 0,

is satisfied at initial time, and the Gauss law is also satisfied at
the initial time,

d
dx

Fini = −
∫
R2

uini
√

f0dv .
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Lemma
The linearized magnetized Vlasov-Poisson system is equivalent
to the magnetized Vlasov-Ampère system with the condition∫ 2π

0 Fini dx = 0, and the Gauss law being satisfied initially.
A fundamental energy relation is easily shown for solutions of
the magnetized Vlasov-Ampère system,

d
dt

(∫
[0,2π]×R2

u2

2
dxdv +

∫
[0,2π]

F 2

2
dx

)
= 0.

The term∫
[0,2π]×R2

∫
v

u2

2
dxdv , is the kinetic energy of the particles, and the term

∫
[0,2π]

F 2

2
dx , is the energy of the electric field.
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This identity, that expresses the conservation of the energy, is
the basis of our formulation of the magnetized Vlasov-Ampère
system as a Schrödinger equation in Hilbert space, where the
magnetized the Vlasov-Ampère operator plays the role of the
selfadjoint Hamiltonian.
We denote by L2(0,2π) the standard Hilbert space of functions
that are square integrable in (0,2π). Furthermore, we
designate by L2

0(0,2π) the closed subspace of L2(0,2π)
consisting of all functions with zero mean value, i.e.,

L2
0(2, π) :=

{
F ∈ L2(0,2π) :

∫ 2π

0
F (x) dx = 0

}
.

Further, we denote by L2(R2) the standard Hilbert space of all
functions that are square integrable in R2. Let us denote by A
the tensor product of L2(0,2π) and of L2(R2), namely,

A := L2(0,2π)⊗ L2(R2).
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Our space of physical states, that we denote by H, is defined
as the direct sum of A and L2

0(0,2π).

H := A⊕ L2
0(0,2π).

We find it convenient to write H as the space of the column
vector-valued functions, (

u
F

)
where u(x , v) ∈ A and F (x) ∈ L2

0(0,2π). The scalar product in
H is given by,((

u
F

)
,

(
f
G

))
H

:= (u, f )A + (F ,G)L2(0,2π).

Note that for the solutions of the magnetized Vlasov-Ampère
system the H− norm is constant in time, as is is equal to twice
the energy.
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We write the magnetized Vlasov-Ampère system as a
Schrödinger equation in the Hilbert space H as follows

i∂t

(
u
F

)
= H

(
u
F

)
,

where the magnetized Vlasov-Ampère operator H is the
following operator in H,

H =

 H0 −iv1 e
−v2

4

iI∗
∫
R2 v1 e

−v2
4 · dv 0

 ,
with

H0 = i (−v1∂x + ωc(v2 ∂v1 − v1 ∂v2)) , ωc := B0.
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write H in the following form,

H = H0 + V,

where

H0 :=

[
H0 0
0 0

]
,

and

V :=

 0 −iv1 e
−v2

4

iI∗
∫
R2 v1 e

−v2
4 · dv 0

 .
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The domain of H is defined as follows,

D[H] := D[H0]⊕ L2
0(0,2π).

For a precise definition of the domain of H0 in A see our paper
in J. Stat. Phys.. For the purpose of this talk it is enough to say
that the functions u ∈ D[H0] ⊂ A have to satisfy,

i (−v1∂x + ωc(v2 ∂v1 − v1 ∂v2)) u ∈ A.

H is selfadjoint in H, and it has pure point spectrum. We prove
this by explicitly computing the eigenvalues and a orthonormal
basis of eigenfunctions. And also by an abstract operator
theoretical argument.
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This explains the Bernstein-Landau paradox.
The general solution is a linear combination of
time-independent solutions (for the eigenvalue zero) and of
oscillatory solutions (for the non-zero eigenvalues).
Note that H is formally analytic in ωc := B0. However, the
domain of H changes abruptly when ωc := B0 = 0.
For ωc 6= 0 we requiere

i (−v1∂x + ωc(v2 ∂v1 − v1 ∂v2)) u ∈ A.

and for ωc = 0,
i (−v1∂x +) u ∈ A.

It is a well known fact that the spectrum of a family of linear
operators depending on a parameter can change abruptly
when the domain changes for some value of the parameter.
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A simple example is the harmonic oscillator,

−∆ + ω2x2

that has pure point spectrum for ω 6= 0, and no eigenvalues,
and continuous spectrum [0,∞) for ω = 0.
So the Bernstein-Landau paradox is just a well known fact of
the perturbation theory of families of selfadjoint operators in
Hilbert space.
Then, our problem is to compute the eigenvalues of H and to
prove that H has a complete orthonormal basis of eigenvectors.
We do this in two different ways.

By an explicit computations of the eigenvalues and by
explicitly constructing an orthonormal basis of
eigenvectors. This results not only is useful in the analysis
of the Bernstein-Landau paradox, but it is also the basis for
the numerical evaluation of the solution, as we will show,
and it can be used for other purposes.
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The Spectrum of H

By an abstract operator theoretical argument that proves
that the spectrum is pure point and that there exists an
orthonormal basis of eigenvectors, but that it does not
gives us explicitly the eigenvectors.

This result is enough to prove that the Bernstein-Landau
paradox exists. Further, it is much simpler, and it show how
abstract operator theoretical methods can give simple
solutions to problems in physics.
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It what follows I discuss the first method.
The kernel of H
H has an infinite dimensional kernel with a complete basis of
orthonormal eigenvectors with eigenvalue zero that we denote
by {

V(0)
n ,n ∈ Z∗

}
,
{

M(0)
0,j , j ∈ N∗

}
,{

M(0)
n,j ,n ∈ Z∗, j = 2, . . .

}
,
{

F(0)
n ,n ∈ Z∗

}
,

where N∗ are the positive integers and Z∗ are the nonzero
integers.
In our paper in J. Stat. Phys. we give the explicit formulae of
these eigenvectors
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The Gauss Law

The eigenvectors of H with eigenvalue zero allow us to express
the Gauss law in a convenient way as an orthogonality relation
in H.
We define,

HG := Span
[{

V(0)
n ,n ∈ Z∗

}
∪M(0)

0,1

]
.

Then, (u,F )T ∈ H satisfies the Gauss law in and only if
(u,F )T ∈ H⊥G , that is to say, if and only if((

u
F

)
,

(
m
J

))
H

= 0,
(

m
J

)
∈ HG.
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In other problems, for example, for the Maxwell equations in
wave guides, the Gauss law is equivalent to being orthogonal to
the full kernel of the Mawell operator, not to a subspace of it ,
as it is the case for the magnetized Vlasov-Ampère operator.
For this point see

R. Weder, Spectral and Scattering Theory for Wave
Propagation in Perturbed Stratified Media, Applied
Mathematical Sciences 87, Springer-Verlag, New York, 1991.

Weder Bernstein-Landau Paradox



The Nonzero Eigenvalues

The following set of eigenfunctions of H with eigenvalue
different from zero are explicitly computed in our paper in J.
Stat. Phys..{

Vm,j ,m ∈ Z∗, j ∈ N∗
}
,
{

Wn,m,j ,n,m ∈ Z∗, j ∈ N∗
}
, {Zn,m,n,m ∈ Z∗} ,

is a orthonormal basis of Ker[H]⊥. Moreover,

Vm,j ,m ∈ Z∗, j ∈ N∗ have eigenvalue, λ(0)m = mωc 6= 0,

and the eigenfunctions,

Wn,m,j ,n,m ∈ Z∗, j ∈ N∗ have eigenvalue, λ(0)m = mωc 6= 0.
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The eigenfunctions
Zn,m,n,m ∈ Z∗,

have eigenvalue λn,m ∈ (mωc , (m + 1)ωc), λn,m 6= 0, and
moreover,

λn,m = mωc + 2πmωc
an,|m|

n2 + an,|m|O
(

1
|m|

)
, m→ ±∞.

where,

an,m :=

∫ ∞
0

e
−r2

2 Jm

(
nr
ωc

)2

rdr > 0, m ∈ Z∗.

This Weyl estimate plays a crucial role in the proof of the
completeness of the eigenfunctions. The λn,m are the Bernstein
frequencies and the Zn,m correspond to the Bernstein modes.
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The General Solution

With the complete orthogonal system of eigenfunctions we can
compute the general solution to the magnetized Vlasov-Ampère
system. For simplicity we present the result for the charge
density fluctuation,

ρ(t , x) := −
∫
R2

u(t , x , v)
√

f0(v)dv .

We denote by G0 the initial data, with G0 ∈ H⊥G .

ρ(t , x) = ρstat(x) + ρdin(t , x),

where,

ρstat := −
∑
n∈Z∗

(
G0,F

(0
n

) ∫
R2

F(0,1)(x , v) e
−v2

4 dv ,

is the static part of the charge density fluctuation, and where
F(0,1)(x , v) is the first component of F(0)

n .

Weder Bernstein-Landau Paradox



Moreover,

ρdin(t , x) =
∑

n,m∈Z∗

e−itλn,m (G0,Zn,m)H ρn,m(x),

is the time dependent part of the charge density fluctuation.
Here ρn,m(x) is the charge density fluctuation of the
eigenfunction Zn,m.

The right-hand side is the expansion of the charge density
fluctuation in the Bernstein modes. Note however, that for
general initial data there is also the static part ρstat of the charge
density fluctuation.
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The existence of the static part, ρstat in general solution appears
to be new, it is usually not reported in the physics literature.
Further, it is also not reported in the mathematical literature.
In Theorem 1 of
J. Bedrossian and F. Wang, The linearized Vlasov and
Vlasov-Fokker Planck equations in a uniform magnetic field, J.
Stat. Phys. 178, 552-594 (2020),

it is claimed that the static part ρstat of the charge density
fluctuation is not present, i.e. that it is identically zero, and that
there are only the oscillatory Bernstein modes. J. Bedrossian
and F. Wang consider the problem in the case of three
dimensions for the configuration and the velocity spaces.
However, in Appendix 2 our paper in J. Stat. Phys. we give
explicit examples that show that the static part is in general non
zero for three dimensional configuration and velocity spaces.
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Computation of the Eigenvalues

The eigenvalues λn,m are the root of the secular function,

α(λ) = −1− 2π
n2

∑
m∈Z∗

mωc

mωc + λ
an,m.

For ωc = 0.5 and n = 1.
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The Solution Initialized with an Eigenfuntion

U(t) = eiλn,mt Uini. (1)

where Uini is an eigenfunction of H with eigenvalue
−λn,m = λm,−m.
In the following numerical results, we take (n,m) = (1,2),
ωc = 0.5, and, Tf = π

2λ1,2
. This means that

U(Tf) = exp
(

i
π

2

)
Uini = i Uini,

and then, the solution of the system at t = Tf corresponds to
the initial condition where the real (up to a sign) and imaginary
parts have been exchanged.
We present the real and imaginary parts of the first component
of U(t) in the v1 − v2 plane for x = 0.
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Modulus of the first component of U(t) in v1 − v2 plane for
x = 0, and the real and imaginary parts of F .

-
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The Nonlinear Magnetized Vlasov-Poisson System

In the following pictures we show how the solution to the
nonlinear magnetized Vlasov-Poisson system behaves when
initialized with an eigenfunction of the magnetized
Vlasov-Ampère system.
For the nonlinear magnetized Vlasov-Poisson system we
initialize with

fini = f0 + ε
√

f0 Re(wn,m), Eini = εRe(Fn),

where wn,n is the first component of the eigenfunction Uini, and
Fn is the second component. Further, ε is a scalar which
controls the amplitude of the perturbation. We take ε = 0.1. As
before, we take (n,m) = (1,2), ωc = 0.5,and, Tf = π

2λ1,2
.
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We compare the theoretical perturbation, u,F , that is given by(
u(t)
F (t)

)
= Re(U(t)),

with the numerical perturbation,

u =
f − f0
ε
√

f0
, and F =

E
ε
.

We plot u in v1 − v2 plane for x = 0 and electric field F .
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The Bernstein-Landau Paradox

We numerically illustrate the Bernstein-Landau paradox and we
compare it with Landau-Damping in the case ωc = 0.
We initialize the nonlinear magnetized Vlasov-Poisson system
with the density function,

fLD(x , v1, v2) =
1

2π
(1 + ε cos kx) e

−v2
2 , ε = 0.001, k = 0.4,

where we take k = 0.4. In this simulation the position interval is
[0, 2π

k ], since we keep periodic solutions.
We consider the approximate solution to the nonlinear
Vlasov-Poisson system, with ωc = 0, given by E.
Sonnendrücker, Modèles Cinétiques pour la Fusion, Notes du
cours de M2. IRMA, Université L. Pasteur, Strasbourg, France,
2008.

E(x , t) ≈ 4ε× 0,424666 exp(−0,0661t) sin(0,4x)
cos(1,2850t − 0,3357725).
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Figure: Damped and undamped electric field
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Operator Theoretical Proof of the Bernstein-Landau
Paradox

We introduce the following Hilbert spaces,

H0 := L2(R2)⊕ {0},

Hn := Span
[

einx
√

2π

]
⊗
(

L2(R2)⊕ C
)
, n ∈ Z∗.

The functions (un, αn)T in Hn can be written as

(
un(x , v)
αn

)
=

 ∑
m∈Z,j∈N∗

un,m,j(x , v) (un,un,m,j)A

αn

 ,

where for n = 0, αn = 0. Here, un,m,j is an orthonormal basis in
A, made of eigenfunctions of the Vlasov operator
H0 := i (−v1∂x + ωc(v2 ∂v1 − v1 ∂v2)) .
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Using the Fourier series in x we prove in our paper in J. Stat.
Phys. that it is enough to prove that the following operators in
Hn have pure point spectrum.

Hn = H0,n + Vn, n ∈ Z,

where H0,n is the operator in Hn given by,

H0,n

(
un(x , v)
αn

)
:=

∑
m∈Z,j∈N∗

(
λ
(0)
m un,m,j(x , v) (un,un,m,j)A

0

)
,

with domain

D[H0,n] := {(un, αn)T :
∑

m∈Z,j∈N

(λ
(0)
m )2|(un,un,m,j)A|2 <∞,

The spectrum of H0,n is pure point and it consists of the infinite
multiplicity eigenvalue λ(0)m ,m ∈ Z.
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Recall that the discrete spectrum of a selfadjoint operator
consists of the isolated eigenvalues of finite multiplicity, and that
the essential spectrum is the complement in the spectrum of
the discrete spectrum.
So, we have reached the conclusion that the spectrum of H0,n
coincides with the essential spectrum and it is given by the
infinite multiplicity eigenvalues λ(0)m ,m ∈ Z.
Further,

Vn

(
einxτ(v)
αn

)
= einx

 −iv1e
−v2

4 αn

iI∗
∫
R2 v1 e

−v2
4 τ(v) dv

 .

The operator Vn is a rank two operator, hence, it is compact.
Then, it is a consequence of the celebrated Weyl theorem for
the invariance of the essential spectrum, that the essential
spectrum of Hn,n ∈ Z is given by the infinite multiplicity
eigenvalues λ(0)m ,m ∈ Z.
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However, since the complement of the essential spectrum is
discrete, we have that the spectrum of Hn consists of the infinite
multiplicity eigenvalues λ(0)m ,m ∈ Z, and of a set of isolated
eigenvalues of finite multiplicity that can only accumulate at the
essential spectrum and at ±∞.
We know from our previous results that these eigenvalues are
the λn,m,n,m ∈ Z∗, and that they are of multiplicity one.
However, the operator theoretical argument does not tell us
that.
However, it tells us that the spectrum of Hn is pure point and
that Hn has a complete orthonormal set of eigenfunctions.
This proves that the Bernstein-Landau paradox.
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