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Abstract

We derive certain properties of the general discrete second-order
periodic operator on the integer lattice with complex coefficients. In
particular, we investigate the case where the spectrum is an interval
of the real line. Recall that in the discrete case there is no Liouville
transformation which transforms the general second-order operator to
a (discrete) Schrödinger operator.

We also we discuss a conjecture regarding the continuous Hill oper-
ator with a complex potential whose spectrum is the positive real axis.
Such potentials have some physical significance (PT -symmetry).
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1 The Complex Hill Operator

Consider the operator

Hy := −y + q(x)y, x ∈ R,

where q(x) is complex-valued and 2π-periodic:

q(x+ 2π) = q(x), x ∈ R.

The operator H is acting in L2(R).

If q(x) is real-valued (and locally square-integrable), thenH is self-adjoint.

There is a huge amount of literature devoted to the self-adjoint case.

The case of a complex-valued q(x) is mathematically intriguing and has
been studied extensively too (V. Tkachenko, F. Gesztesy, et al.). As ex-
pected, the theory is quite different from the self-adjoint case.

The recent emergence of the PT -Symmetric Quantum Theory provides an-
other strong motivation for studying non-self-adjoint Schrödinger operators
(“non-Hermitian Hamiltonians” in the physicists’ terminology), especially
in the case where their spectra are real.
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2 Floquet Theory, Discriminant and Spectrum

Consider the problem

Hy = −y′′ + q(x)y = λy = k2y, x ∈ R, (1)

where
λ = k2 ∈ C

is the spectral parameter.

Let u(x) = u(x;λ) and v(x) = v(v;λ) be the solutions of (1) such that

u(0;λ) = 1, u′(0;λ) = 0, v(0;λ) = 0, v′(0;λ) = 1,

where primes denote derivatives with respect to x.

The Wronskian of u(x) and v(x) is identically equal to 1.

In particular, u(x) and v(x) are linearly independent functions of x.

Since we have smooth dependence on the parameter λ, the solutions u(x;λ)
and v(x;λ) are entire in λ. Their orders are ≤ 1/2.

In the case q(x) ≡ 0 (the unperturbed case) we have

ũ(x;λ) = cos
(√

λx
)

and ṽ(x;λ) =
sin
(√

λx
)

√
λ

(tilded quantities will be associated to the unpertubed case).
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Now let S be the “shift” or monodromy operator

(Sf)(x) := f(x+ 2π).

The periodicity of q(x) implies that the linear operator S maps solutions of
(1) to solutions of (1) for the same value of λ (in other words, S commutes
with H), and by exploiting this simple observation one can develop the
Floquet/spectral theory of H.

For each λ ∈ C let W = W(λ) be the two-dimensional vector space of the
solutions of (1). The matrix of the operator S|W with respect to the basis
(u, v) is

S = S(λ) =

[
u(2π;λ) v(2π;λ)
u′(2π;λ) v′(2π;λ)

]
(the matrix S and the vector space W depend on λ).
S is the Floquet or monodromy matrix associated to equation (1) and

detS(λ) ≡ 1.

It follows that the characteristic polynomial of S(λ) is

det (S − ρI) = ρ2 −∆(λ) ρ+ 1,

where
∆(λ) := trS(λ) = u(2π;λ) + v′(2π;λ)

is the Hill discriminant (also known as Lyapunov’s function) of H.

∆(λ) is entire of order 1/2.
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Sometimes we may find more convenient, instead of λ, to work with the
parameter k (recall that λ = k2) and, to avoid confusion, whenever we view
the discriminant as a function of k, we will denote it by D(k), so that

D(k) = ∆(k2) = ∆(λ).

Clearly, D(k) is an even entire function of order 1.

A remarkable result of V. Tkachenko is that for a function D(k) to be
the Hill discriminant of some Hill operator with a 2π-periodic potential
q(x) ∈ L2

loc(R), it is necessary and sufficient that it be an even entire
function (of order one) of exponential type 2π which may be represented in
the form

D(k) = 2 cos(2πk) + 2π⟨q⟩sin(2πk)
k

− π2⟨q⟩2 cos(2πk)
k2

+
h(k)

k2
, k ∈ C,

where

⟨q⟩ = 1

2π

∫ 2π

0
q(x) dx

and h(k) is an (even) entire function of order ≤ 1; if the order of h(k) is 1,
then its type is ≤ 2π. Furthermore, h(k) satisfies the conditions∫ ∞

−∞
|h(k)|2 dk <∞ and

∞∑
n=−∞

∣∣∣h(n
2

)∣∣∣ <∞.
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Now, let ρ1(λ) and ρ2(λ) = ρ1(λ)
−1 be the eigenvalues of S(λ), namely the

Floquet multipliers of H. We have

ρ1(λ) + ρ2(λ) = trS(λ) = ∆(λ),

and

ρ1(λ), ρ2(λ) =
∆(λ)±

√
∆(λ)2 − 4

2
.

The eigenvectors of S(λ) associated to its eigenvalues ρ1(λ) and ρ2(λ) corre-
spond to the the Floquet solutions ϕ1(x;λ) and ϕ2(x;λ) of (1) satisfying

ϕj(x+ 2π) = (Sϕj)(x) = ρjϕj(x), j = 1, 2.

Notice that ρ1(λ) = ρ2(λ) can happen only if ρ1(λ) = ρ2(λ) = ±1 (equiva-
lently, ∆(λ) = ±2). In this case we may not have two linearly independent
Floquet solutions. If two linearly independent Floquet solutions exist, then
we say we have coexistence.
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It is sometimes more convenient to view ρ1(λ) and ρ2(λ) as the two branches
of a (single-valued) analytic function ρ(λ) defined on the Riemann surface of
the function

√
∆(λ)2 − 4 (generically this Riemann surface is not compact).

Thus,

ρ(λ) +
1

ρ(λ)
= ∆(λ), ρ(λ) =

∆(λ) +
√

∆(λ)2 − 4

2

and ρ(λ) can be called the Floquet multiplier associated to (1).

The fact that ∆(λ) is entire implies that ρ(λ) has neither zeros nor poles
(nor essential singularities) for any finite λ. Therefore, the only possible sin-
gularities of ρ(λ) are square-root branch points at which we must necessarily
have ρ(λ) = ±1 (equivalently, ∆(λ) = ±2).

Actually, ρ(λ) must have at least one branch point, since if it had no branch
points, then it would have been an entire function of order ≤ 1/2 with no
zeros, therefore, a constant, which is impossible.

In some sense, ρ(λ) can be viewed as the analog of the exponential function
for the Riemann surface of

√
∆(λ)2 − 4. Also,

[log ρ(λ)]′ =
ρ′(λ)

ρ(λ)
=

∆′(λ)√
∆(λ)2 − 4

and, since ρ(λ) is single-valued on the Riemann surface, we have that the
holomorphic differential

∆′(λ)√
∆(λ)2 − 4

dλ

has period 2πi (log ρ(λ) is the Floquet exponent).
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The values of λ for which ρ(λ) = 1 (equivalently, ∆(λ) = 2) are the periodic
eigenvalues of H, since, in this case, any associated Floquet solution is 2π-
periodic.

The values of λ for which ρ(λ) = −1 (equivalently, ∆(λ) = −2) are the
antiperiodic eigenvalues of H, since, in this case, any associated Floquet
solution is 2π-antiperiodic, namely

ϕ(x+ 2π) = −ϕ(x),

As we have already mentioned, S(λ) can have a Jordan anomaly only if
ρ(λ) = ±1 (equivalently, only if ∆(λ) = ±2) and in the presence of such an
anomaly the matrix S(λ) is similar to the Jordan canonical matrix[

±1 1
0 ±1

]
.

Let us mention that λ⋆ can be a zero of ∆(λ)2−4 of even multiplicity, so that
λ⋆ is not a branch point of ρ(λ), and, yet, S(λ⋆) may not be diagonalizable.
If this is the case, we say that the Floquet matrix S(λ) has a pathology of
the second kind at λ⋆.

9



If for some λ = λ⋆ we have coexistence of two periodic or, respectively,
antiperiodic solutions, then

S(λ⋆) =

[
1 0
0 1

]
, resp. S(λ⋆) =

[
−1 0
0 −1

]
.

If λ⋆ is a periodic eigenvalue for which we have coexistence of two periodic
solutions, then λ⋆ is a zero of ∆(λ) − 2 of multiplicity ≥ 2. Likewise,
if λ⋆ is an antiperiodic eigenvalue for which we have coexistence of two
antiperiodic solutions, then λ⋆ is a zero of ∆(λ) + 2 of multiplicity ≥ 2
(algebraic multiplicity ≥ geometric multiplicity).

The last statement follows from the formula

∆′(λ) =u(2π;λ)

∫ 2π

0
u(x;λ)v(x;λ)dx− v(2π;λ)

∫ 2π

0
u(x;λ)2dx

+ u′(2π;λ)

∫ 2π

0
v(x;λ)2dx− v′(2π;λ)

∫ 2π

0
u(x;λ)v(x;λ)dx.
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2.1 The Spectrum

The spectrum σ(H) of H is characterized as

σ(H) = {λ ∈ C : |ρ(λ)| = 1} = {λ ∈ C : ρ(λ) = eiθ, 0 ≤ θ ≤ π},

= {λ ∈ C : ∆(λ) ∈ [−2, 2]} = {λ ∈ C : ∆(λ) = 2 cos θ, 0 ≤ θ ≤ π}.

Notice that σ(H) is an unbounded closed subset of C (this follows, e.g., from
the fact that ∆(λ) is entire of order 1/2 and, consequently, takes every value
in [−2, 2] infinitely many times).

More precisely (V. Tkachenko, F. Gesztesy) σ(H) is a countable system (i.e.
union) of analytic arcs, where the analyticity of such an arc may fail only
at a point λ such that ∆′(λ) = 0 (while ∆(λ) = 2 cos θ for some θ ∈ [0, π],
so that λ lies in the spectrum). Furthermore, the resolvent set C ∖ σ(H)
of H is path-connected. In particular, σ(H) cannot contain closed curves
and, also, it cannot be a piecewise analytic curve without an endpoint.
Asymptotically, the spectral arcs approach the half-line (the asymptotic
form of the spectrum)

ℓ⟨q⟩ = {z ∈ C : z = ⟨q⟩+ x, x ≥ 0}.

Observe that if λ⋆ is a periodic or antiperiodic eigenvalue, then ∆(λ⋆) = ±2,
hence λ⋆ ∈ σ(H).
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3 The Case where σ(H) is a Single Analytic Arc

Suppose that the spectrum σ(H) is an analytic (connected) curve. Since
C∖ σ(H) is path-connected, σ(H) must have an endpoint, say λ0.

By replacing q(x) by q(x) − λ0, we can assume that the endpoint of σ(H)
is 0.

Suppose ∆(λ∗)2 − 4 = 0. Then λ∗ ∈ σ(H). Let us assume that λ∗ ̸= 0 so
that λ∗ is an “interior” point of σ(H). The Taylor expansion of ∆(λ) about
λ∗ gives

∆(λ) = ±2 + c(λ− λ∗)d +O
[
(λ− λ∗)d+1

]
, λ→ λ∗,

where d is an integer ≥ 1 and c ̸= 0. Then, the assumption that λ∗ is an
interior point of σ(H) forces d = 2, hence λ∗ cannot be a branch point of
ρ(λ).

It follows that 0 is the unique branch point of ρ(λ). Thus,

ρ(λ) = f
(√

λ
)
= f(k) (since λ = k2),

where f(k) is entire of order 1 and has no zeros. Furthermore 0 is a branch
point of ρ(λ) and, hence, ρ(0) = ±1. Therefore, ρ(λ) must be of the form

ρ(λ) = ±eiα
√
λ,

where α ̸= 0 is a complex constant.
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Hence,

∆(λ) = ρ(λ) + ρ(λ)−1 = ±2 cos
(
α
√
λ
)
,

and the general characterization of the discriminant implies that α = 2π
and ⟨q − λ0⟩ = 0 (i.e. for our original q(x) we must have ⟨q⟩ = λ0).
Furthermore,

∆(λ) = 2 cos
(
2π

√
λ
)
, hence ρ(λ) = e2πi

√
λ

and, consequently,
σ(H) = [0,∞)

(for our original q(x) we must have σ(H) = ⟨q⟩ + [0,∞)). Notice also
that ρ(0) = 1, hence 0 is a periodic eigenvalue. Furthermore, ∆′(λ) =

−2π sin
(
2π

√
λ
)
/
√
λ, hence ∆′(0) = −4π2 ̸= 0, which implies that for

λ = 0 we cannot have coexistence.

Thus, S(λ) does not have a pathology of the first kind at λ = 0 (a pathology
of the first kind at λ⋆ occurs if λ⋆ is a branch point of ρ(λ) and at the
same time we have coexistence of two periodic or antiperiodic solutions at
λ = λ⋆).
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4 The Self-Adjoint Case

In the self-adjoint case (i.e. when q(x) is real-valued) λ⋆ is a double zero of
∆(λ)− 2 if and only if we have coexistence of periodic solutions for λ = λ⋆,
while λ⋆ is a double zero of ∆(λ) + 2 if and only if we have coexistence
of antiperiodic solutions for λ = λ⋆. Furthermore, ∆(λ)2 − 4 cannot have
any zeros with multiplicity > 2. In this sense, algebraic multiplicity equals
geometric multiplicity. Also, a point λ⋆ is a branch point of the Floquet
multiplier ρ(λ) if and only if S(λ⋆) has a Jordan anomaly.

The spectrum is a union of closed intervals (the bands) separated by open
intervals (the gaps):

σ(H) =
⋃
n≥0

[λ2n, λ2n+1] , λ0 < λ1 ≤ λ2 < λ3 ≤ λ4 < λ5 ≤ λ6 < · · ·

λ0 and λ4j−1 ≤ λ4j , j ≤ 1 are the periodic eigenvalues, while

λ4j−3 ≤ λ4j−2, j ≤ 1 are the antiperiodic eigenvalues.

If for some n ≥ 1 we have that λ2n−1 = λ2n,
then the corresponding gap (λ2n−1, λ2n) of the spectrum is closed (i.e.
empty) and we have coexistence of two linearly independent periodic or
antiperiodic solutions.

If λ2n−1 < λ2n, then there is no coexistence neither at λ2n−1 nor at λ2n.
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Clearly, the Dirichlet spectrum {µ1, µ2, . . .} of H on the interval (0, 2π)
coincides with the set of (distinct) zeros of the entire function v(2π;λ).

In the self-adjoint case all the zeros of v(2π;λ) are simple and, of course, real.
Furthermore, if v(2π;µ) = 0, then the Floquet matrix at λ = µ becomes

S(µ) =

[
u(2π;µ) 0
u′(2π;µ) v′(2π;µ)

]
,

hence the real quantities u(2π;µ) and u′(2π;µ) are the eigenvalues of S(µ),
i.e. the Floquet multipliers. In particular, u(2π;µ)u′(2π;µ) = 1 and, conse-
quently |∆(µ)| = |u(2π;µ) + u′(2π;µ)| = |u(2π;µ)|+ |u′(2π;µ)| ≥ 2.

Actually, we have

λ0 < λ1 ≤ µ1 ≤ λ2 < λ3 ≤ µ2 ≤ λ4 < λ5 ≤ µ3 ≤ λ6 < · · ·

There is a very short proof of all the above properties of the self-adjoint
case. First we check them for the trivial case q(x) ≡ 0 and then we consider
the continuous deformation of potentials

tq(x), 0 ≤ t ≤ 1,

and exploit the continuous dependence on t (notice that, due to self-adjointness
all motion of the λ’s and µ’s is confined on the real axis).
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5 A Well-Known Theorem of Borg

In the famous paper

Borg, G., Eine Umkehrung der Sturm-Liouvilleschen Eigenwertaufgabe, Acta
Math., 78, 1–96 (1946)

among many other inverse spectral results regarding the Sturm-Liouville
operator, Borg has shown that for a real-valued potential q(x) ∈ L2

loc(R):

If σ(H) = [0,∞), then q(x) = 0 a.e.

Actually, Borg proved a more general statement. He showed that if all the
gaps corresponding to antiperiodic eigenvalues are closed, then

q(x+ π) = q(x).

QUESTION: Are there analogs or extensions to Borg’s theorem in the
complex potential case?

It is worth mentioning that Borg’s theorem fails in the case where the po-
tential q(x) is quasi-periodic (or limit-periodic?).
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6 Gasymov’s Discovery

The case of a nonreal q(x), however, is quite different. Gasymov made the
remarkable discovery that if

q(x) =
∞∑
n=1

Bne
inx, with

∞∑
n=1

|Bn| <∞,

then the equation
Hy = −y′′ + q(x)y = k2y,

has a Floquet solution of the form

ϕ(x; k) = eikx

(
1 +

∞∑
n=1

1

n+ 2k

∞∑
ℓ=n

cnℓe
iℓx

)

where the coefficients cnℓ do not depend on k and satisfy

∞∑
n=1

1

n

∞∑
ℓ=n+1

ℓ(ℓ− n)|cnℓ| <∞ and
∞∑
n=1

n|cnℓ| <∞.

It follows that the Floquet multiplier is

e2πik = e2πi
√
λ,

and consequently, σ(H) = [ 0,∞).

Notice also that ϕ(x; k) is meromorphic in k whose poles are simple. Fur-
thermore, every pole is of the form −n/2, where n is a positive integer and
if k ̸= −n/2, n = 0, 1, . . ., then ϕ(x;−k) is the other Floquet solution.
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Actually, since the spectral properties of the operator H depend continu-
ously on q(x) with respect to the L2(0, 2π)-norm, it follows that for the
weaker assumption that

∑∞
n=1 |Bn|2 <∞ we still have σ(H) = [ 0,∞).

It is also worth mentioning that there are multidimensional analogs of Gasy-
mov’s result (see, e.g., P. Kuchment).

Also,

∆(λ) = 2 cos(2π
√
λ) ⇒ ∆(λ)2 − 4 = −4 sin2(2π

√
λ),

hence, the zeros of ∆(λ)2 − 4 are (counting multiplicities)(n
2

)2
, n ∈ Z.

Notice that 0 is a simple zero of ∆(λ)2−4, while all other zeros, namely the
zeros n2/4, n ≥ 1, are double.

Clearly, the only branch point of the Floquet multiplier ρ(λ) = e2πi
√
λ is

λ = 0. However, S(n2/4) may not be diagonalizable for nonzero values of n
(pathology of the second kind).
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There is an easy way to (partly) understand Gasymov’s result. In the equa-
tion

−y′′ + q(x)y = k2y, q(x) =

∞∑
n=1

Bne
inx,

we substitute
z = eix, w(z) = w(eix) = y(x)

Then the equation becomes

z2w′′(z) + zw′(z) + P (z)w(z) = k2w(z), with P (z) =
∞∑
n=1

Bnz
n.

This equation has a regular singular point at z = 0, therefore its solutions
can be expressed in Frobenius series. The indicial equation is

r2 = k2, thus r = ±k

and, hence, the Frobenius solutions are (at least for k ̸= n/2, n = 0,±1,±2, . . .)

w(z) = z±k
∞∑
n=0

anz
n,

which implies that the Floquet multiplier of the original equation is e2πik

and, consequently, the spectrum is [0,∞).
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7 An Example

For a fixed integer m ≥ 1 and a fixed complex number a ̸= 0 with |a| ̸= 1
we set

qm(x) =
2m2aeimx

(aeimx + 1)2
=

2m2a−1e−imx

(a−1e−imx + 1)2
=
m2

2
sech2

(
ξ + imx

2

)
, ξ = ln a.

Notice that for |a| < 1 we have

qm(x) = 2m2a
∞∑
n=1

(−1)n+1neinmx

while for |a| > 1 we have

qm(x) = 2m2a−1
∞∑
n=1

(−1)n+1ne−inmx

Then, one Floquet solution of the equation

−y′′ + qm(x)y = k2y,

is

ϕ(x; k) = eikx
[
1− 1

k + (m/2)
· maeimx

aeimx + 1

]
(in the case |a| < 1 this is the Gasymov solution).
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ϕ(x; k) = eikx
[
1− 1

k + (m/2)
· maeimx

aeimx + 1

]
Now, unless k = m/2, we have that ϕ(x;−k) is also a Floquet solution and,
furthermore, ϕ(x; k) and ϕ(x;−k) are linearly independent for k ̸= 0 (and
k ̸= ±m/2). Thus, we have coexistence for all k ̸= 0,±m/2.

For k = 0, i.e. for λ = 0, another solution is(
x− 4

im
· 1

aeimx − 1

)
ϕ(x; 0),

which is, obviously, not periodic. Hence, we do not have coexistence. Fur-

thermore, let us notice that λ = 0 is a simple zero of ∆(λ)2−4 = −4 sin2
(
2π

√
λ
)
.

For k = ±m/2, i.e. for λ = m2/4, another solution is(
2imax+ a2eimx − e−imx

)
ϕ(x;m/2),

which is, obviously, neither periodic nor antiperiodic. Hence, again, we do
not have coexistence. However, λ = m2/4 is a double zero of ∆(λ)2 − 4 =

−4 sin2
(
2π

√
λ
)
(pathology of the second kind).
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8 A Conjecture

Conjecture. Let q(x) be an entire and 2π-periodic function of x. If the
spectrum of the operator H = −d2/dx2 + q(x) is

σ(H) = [0,∞),

then

q(x) =
∞∑
n=1

Ane
−inx or q(x) =

∞∑
n=1

Bne
inx.

Terminology. We call Gasymov potential any (not necessarily entire) pe-
riodic function G(x) whose Fourier series expansion contains only positive
or only negative frequencies.

A small indication in favor of the conjecture is the following:

If the Fourier expansion of q(x) contains both positive and negative fre-
quencies, then the resulting equation with respect to z = eix has a singular
singular point at z = 0.

22



9 The Shifted Operator

Let ξ be a given real number. We introduce the shifted operator

(Hξ y)(x) = −y′′(x) + qξ(x) y(x) acting in L2(R),

where
qξ(x) = q(x+ ξ)

(thus H0 = H).

Notation. If A is a quantity associated to the operator H, the correspond-
ing quantity associated to the operator Hξ will be denoted by Aξ.

Suppose that ϕ(x;λ) is a Floquet solution of Hy = λy associated to the
Floquet multiplier ρ(λ), so that

ϕ(x+ 2π;λ) = ρ(λ)ϕ(x;λ).

Then, ϕ(x + ξ;λ) satisfies the equation Hξ y = λy and we also have that
ϕ(x+2π+ ξ;λ) = ρ(λ)ϕ(x+ ξ;λ), which means that ϕ(x+ ξ;λ) is a Floquet
solution of Hξ = λy associated to the Floquet multiplier ρ(λ). And since
this is true for every λ ∈ C it follows that

ρξ(λ) ≡ ρ(λ)

i.e. the operators H and Hξ have the same Floquet multiplier and, conse-
quently,

σ(Hξ) = σ(H),

thus the spectrum of H remains invariant under the shift by ξ.
We also get that

∆ξ(λ) ≡ ∆(λ), i.e. uξ(2π;λ) + v′ξ(2π;λ) ≡ u(2π;λ) + v′(2π;λ).

Suppose now that q(x) is analytic in a strip T of the form a < ℑ(x) < b
containing the real axis. Then qξ(x) = q(x + ξ) makes sense for ξ ∈ T and
x ∈ R. Therefore, by analytic continuation the above equations remain true
for all ξ ∈ T . If, in particular, q(x) is entire in x, then they remain true for
all ξ ∈ C.
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If, however, q(x) is meromorphic in x, the above do not quite hold. For
instance, let

q(x) =
eix

1− (1/2) eix
.

Clearly, q(x) is meromorphic and

q(x) =
∞∑
n=1

einx

2n−1
, x ∈ R.

Thus, q(x) is a Gasymov potential and, consequently, σ(H) = [0,∞). Now,
let us consider the shifted potential

qξ(x) =
eiξeix

1− (1/2) eiξeix
.

By choosing ξ = −i ln 4 we get

qξ(x) =
4eix

1− 2eix
=

−2

1− (1/2) e−ix
= −2−

∞∑
n=1

e−inx

2n−1
, x ∈ R,

from which we see that qξ(x) + 2 is a Gasymov potential and
σ(Hξ) = [−2,∞) ̸= σ(H).
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10 Asymptotic Formulas

Suppose q(x) is in C2. Then (see, e.g., J. Pöschel and E. Trubowitz),

v(x;λ) = ṽ(x;λ)−
cos
(√

λx
)

2
√
λ

Q(x)+
ṽ(x;λ)

4λ

[
q(x) + q(0)− Q(x)2

2

]
+O

(
e|ℑ(

√
λ)|x

|λ|2

)
, λ→ ∞,

where

ṽ(x;λ) =
sin
(√

λx
)

√
λ

and Q(x) =

∫ x

0
q(ξ)dξ.

Thus, if

⟨q⟩ = Q(2π)

2π
=

1

2π

∫ 2π

0
q(ξ)dξ = 0,

then

v(2π;λ) = ṽ(2π;λ) +
ṽ(2π;λ)

2λ
q(0) +O

(
e2π|ℑ(

√
λ)|

|λ|2

)
, λ→ ∞.

IfN is a sufficiently large integer, then v(2π;λ) has exactlyN zeros (counting
multiplicities) in the open half-plane

ℜ(λ) <
(
N

2
+

1

4

)2

(notice that ṽ(2π;λ), too, has exactly N zeros in the above half-plane).
Furthermore, for each n > N , v(2π;λ) has exactly one simple zero in the
egg-shaped region ∣∣∣√λ− n

2

∣∣∣ < 1

4

and v(2π;λ) has no other zeros.
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11 A Trace Formula

Let µ1, µ2, . . . be the zeros of v(2π;λ) (counting multiplicities) labeled so
that |µ1| ≤ |µ2| ≤ · · · . Then, assuming that q ∈ C2 with

⟨q⟩ = 1

2π

∫ 2π

0
q(ξ)dξ = 0,

we have the trace formula

lim
n

∑
j≤n

(
µj −

j2

4

)
=

∞∑
n=1

(
µn − n2

4

)
= −q(0)

2
.

The proof is done by estimating the contour integrals

1

2πi

∮
Cn

λ

[
∂λv(2π;λ)

v(2π;λ)
− ∂λṽ(2π;λ)

ṽ(2π;λ)

]
dλ,

where Cn, n ≥ 1 is the circle of radius
(
n
2 + 1

4

)2
, centered at 0, while ∂λ

denotes the derivative with respect to λ.

Notice that, for all n sufficiently large the above integral is equal to the sum∑
j≤n

(
µj −

j2

4

)
.
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To estimate the above contour integrals, we start with the asymptotic for-
mula

m(λ) :=
v(2π;λ)

ṽ(2π;λ)
= 1 +

q(0)

2λ
+O

(
1

λ5/2

)
, λ→ ∞, λ ∈

∞⋃
n=1

Tn,

where Tn, n = 1, 2, . . ., are the annuli

Tn =

{
λ ∈ C :

∣∣∣∣∣λ−
(
n

2
+

1

4

)2
∣∣∣∣∣ < 1 + nα

}

for some fixed α ∈ (0, 1). Notice that the asymptotic formula also implies

ṽ(2π;λ)

v(2π;λ)
= 1− q(0)

2λ
+O

(
1

λ5/2

)
, λ→ ∞, λ ∈

∞⋃
n=1

Tn,

Next, let Γ ⊂ Tn be the circle of radius nα, centered at λ ∈ Cn. Then, for
λ ∈ Cn, Cauchy’s integral formula gives

m′(λ) =
∂λv(2π;λ)ṽ(2π;λ)− v(2π;λ)∂λṽ(2π;λ)

ṽ(2π;λ)2

=
1

2πi

∮
Γ

m(z)

(z − λ)2
dz = −q(0)

2λ2
+ o

(
1

λ5/2

)
, λ→ ∞, λ ∈

∞⋃
n=1

Cn.

Finally, since

∂λv(2π;λ)

v(2π;λ)
−∂λṽ(2π;λ)

ṽ(2π;λ)
=
ṽ(2π;λ)

v(2π;λ)
·∂λv(2π;λ)ṽ(2π;λ)− v(2π;λ)∂λṽ(2π;λ)

ṽ(2π;λ)2
,
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we get from the previous asymptotic formulas that

λ

[
∂λv(2π;λ)

v(2π;λ)
− ∂λṽ(2π;λ)

ṽ(2π;λ)

]
= −q(0)

2λ
+ o

(
1

λ3/2

)
, λ→ ∞, λ ∈

∞⋃
n=1

Cn.

hence

1

2πi

∮
Cn

λ

[
∂λv(2π;λ)

v(2π;λ)
− ∂λṽ(2π;λ)

ṽ(2π;λ)

]
dλ = −q(0)

2
+ o (1), n→ ∞.
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12 The System of Equations for the µ’s

Suppose q(x) is a real C3 potential and µ1(0), µ2(0), . . . are the zeros of
v(2π;λ) associated to q(x). Then (Trubowitz) the system of equations

dµn
dξ

=
n2
√

∆(µn)2 − 4

4
∏

j ̸=n

(
µj−µn

j2/4

) , n = 1, 2, . . . ,

where ∆(λ) is the Hill discriminant associated to q(x), has a unique solution
µ1(ξ), µ2(ξ), . . ..

Under the appropriate choice of the signs of the square roots
√

∆(µn)2 − 4,
the solution µ1(ξ), µ2(ξ), . . . of the system is the set of zeros of vξ(2π;λ),
where vξ(x;λ) is the solution associated to qξ(x) = q(x + ξ) satisfying
vξ(0;λ) = 0 and v′ξ(0;λ) = 1.

Due to the analytic nature of the above system of equations, we expect that
it continues to hold in the case of a smooth complex q(x).
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13 A Simple Case where the Conjecture is True

As we have seen, if σ(H) = [0,∞), then ∆(λ) = 2 cos
(
2π

√
λ
)
, hence

∆(λ)2−4 = −4 sin2
(
2π

√
λ
)
. Therefore, the system of equations for the µ’s

becomes
dµn
dξ

= σn
in2 sin

(
2π

√
µn
)

2
∏

j ̸=n

(
µj−µn

j2/4

) , n = 1, 2, . . . ,

where σn = ±1.

Suppose now that we have coexistence for all λ ̸= 0,m2/4, where m >
0 is an integer, while for λ = m2/4 we do not have coexistence. Then,
vξ(2π;n

2/4) = 0 for all n ≥ 1, n ̸= m. Consequently, µn(ξ) = n2/4 for all
n ≥ 1, n ̸= m and the above system reduces to a single differential equation
for µm(ξ):

dµm
dξ

= ±4iπ
√
µm

(
m2

4
− µm

)
.

This equation can be easily solved and from its solutions we can obtain the
associated potentials q(x) (via the trace formula), which turn out to be the
Gasymov potentials (recall our Example)

qm(x) =
2m2aeimx

(aeimx + 1)2
=

2m2a−1e−imx

(a−1e−imx + 1)2
, a ̸= 0, |a| ≠ 1.

Hence our conjecture is true in the case where we have coexistence for all
λ ̸= 0,m2/4.
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14 Another Analog of Borg’s Theorem

Theorem. Suppose q ∈ C2 and σ(H) = [ 0,∞), so that ∆(λ) = 2 cos(2π
√
λ).

Furthermore, suppose that we have coexistence at λ = n2/4, for every inte-
ger n ≥ 1. Then q(x) ≡ 0.

Notice that coexistence at λ = n2/4, for every integer n ≥ 1, implies that
both u(x;n2/4) and v(x;n2/4) are Floquet solutions and, consequently, pe-
riodic or antiperiodic, since ρ(n2/4) = ±1. Therefore, v(2π;n2/4) = 0 for
every integer n ≥ 1. From the asymptotic formulas it follows that these are
the only zeros of v(2π;λ) and, furthermore, that all these zeros are simple,
i.e.

µn =
n2

4
, n ≥ 1.

Furthermore, the same is true for the shifted operator Hξ, for every ξ ∈ R.

Therefore by the trace formula we get

0 =
∞∑
n=1

(
n2

4
− n2

4

)
=

∞∑
n=1

[
µn(ξ)−

n2

4

]
= −

qξ(0)

2
≡ −q(ξ)

2
,

i.e. q(ξ) ≡ 0.
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15 The Discrete Case

As we all know, discrete and continuous problems share many similarities,
but they can also be quite different in certain aspects.

We will briefly mention some results regarding the discrete case. The details
can be found in the article:

V.P., Periodic Jacobi operators with complex coefficients, Journal of Spectral
Theory, 11 (no. 2), 781–819 (2021).
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Consider the periodic Jacobi (or discrete Hill-type operator) L defined as

(Lw)(n) := a(n)w(n+ 1) + a(n− 1)w(n− 1) + b(n)w(n), n ∈ Z,

where the coefficients a(n) and b(n) are complex-valued and periodic func-
tions of period N ∈ N := {1, 2, . . .} with

a(n) ̸= 0 for all n ∈ Z.

Let us mention that if a(n0) = 0 for some n0, then a(n0 + ℓN) = 0 for all
ℓ ∈ Z and L splits as L =

⊕
ℓ∈ZA, where A is a linear operator acting on

an N -dimensional space, which can be considered as a degenerate case (e.g.,
the spectrum of L consists of at most N eigenvalues of infinite multiplicity).

In the special case where a(n) ≡ −1 the operator L becomes the one-
dimensional discrete periodic Schrödinger (or discrete Hill) operator
with potential b(n).

Unlike the continuous case, here there is no Liouville-type transformation
which transforms the general operator L to a discrete periodic Schrödinger
operator (in fact, even in the continuous case, in the presence of complex
coefficients the Liouville transformation becomes problematic).
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We will normalize (unless otherwise stated) a(n) so that

N∏
j=1

a(j) = (−1)N

Since a(n) and b(n) are N -periodic, they can be expanded as

a(n) = A0 +
N−1∑
k=1

Akω
kn
N and b(n) = B0 +

N−1∑
k=1

Bkω
kn
N , ωN := e2πi/N ,

where A0, A1, . . . , AN−1, B0, B1, . . . , BN−1 ∈ C (this is a Fourier-style ex-
pansion).

It seems there is no analog of a Gasymov potential in the discrete
case.
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It is not hard to check the orthogonality relation

N−1∑
n=0

ωjn
N ω̄kn

N =
N−1∑
n=0

e2(j−k)nπi/N = Nδjk for j, k = 0, 1, . . . , N − 1,

where the bar denotes complex conjugation (thus ω̄N = ω−1
N ) and δjk is the

Kronecker delta. We have

Ak =
1

N

N−1∑
n=0

a(n) ω̄kn
N and Bk =

1

N

N−1∑
n=0

b(n) ω̄kn
N ,

in particular (for k = 0),

N−1∑
n=0

a(n) = A0N and
N−1∑
n=0

b(n) = B0N.

Clearly our discrete operator L is bounded on l2(Z), and hence the l2(Z)-
spectrum σ(L) of L is a compact subset of C.
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16 Review of the Spectral Theory of L

The spectral theory of L is studied via the equation

(Lw)(n) = a(n)w(n+1)+a(n−1)w(n−1)+b(n)w(n) = λw(n), n ∈ Z,

where λ ∈ C is the spectral parameter.

It is customary to introduce the two solutions u(n) = u(n;λ) and v(n) =
v(n;λ) which satisfy the initial conditions

u(−1) = 0, u(0) = 1, v(−1) = − 1

a(−1)
, v(0) = 0.
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For n ≥ 0 the solution u(n) = u(n;λ) is a polynomial in λ of degree n having
the form

u(n;λ) =

1

Πn

λn −

n−1∑
j=0

b(j)

λn−1 +

 ∑
0≤j<k≤n−1

b(j) b(k)−
n−2∑
j=0

a(j)2

λn−2 + · · ·

 ,

where

Πn :=

n−1∏
j=0

a(j),

while for n ≥ 1 the solution v(n) = v(n;λ) is a polynomial in λ of degree
n− 1 having the form

v(n;λ) =

1

Πn

λn−1 −
n−1∑
j=1

b(j)λn−2 +

 ∑
1≤j<k≤n−1

b(j) b(k)−
n−2∑
j=1

a(j)2

λn−3 + · · ·


(here we follow the standard convention that empty sums equal 0, while
empty products equal 1; e.g., v(1;λ) = a(0)−1).
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Notice also that

∣∣∣∣ u(n) v(n)
−a(n− 1)u(n− 1) −a(n− 1) v(n− 1)

∣∣∣∣ = 1 for all n ∈ Z, λ ∈ C.

In particular, u(n) and v(n) are linearly independent solutions of (1) for any
value of the parameter λ.
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Sometimes it is more convenient, instead of the solutions u(n) and v(n) to
work with the (linearly independent) solutions χ(n) = χ(n;λ) and γ(n) =
γ(n;λ) determined by the initial conditions

χ(0) = 1, χ(1) = 0 and γ(0) = 0, γ(1) = 1.

It follows easily that

χ(n;λ) = u(n;λ) + [b(0)− λ]v(n;λ) and γ(n;λ) = a(0) v(n;λ).

For n ≥ 2, we have that χ(n;λ) is a polynomial in λ of degree n − 2 and
γ(n;λ) is a polynomial in λ of degree n − 1. Finally, an easy calculation
yields ∣∣∣∣ χ(n) γ(n)

χ(n+ 1) γ(n+ 1)

∣∣∣∣ = a(0)

a(n)
for all n ∈ Z, λ ∈ C.
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Remark. For any fixed n ≥ 0 the polynomials v(n;λ) and v(n+1;λ) do not
have any common zeros (i.e. they are relatively prime). The justification
of this fact is very simple: Suppose v(n;λ0) = v(n + 1;λ0) = 0. Then, the
fact that v(n;λ0) satisfies the difference equation (for λ = λ0) implies that
v(n;λ0) = 0 for all n ∈ Z, which is a contradiction since, e.g., v(1;λ0) =
1/a(0). Likewise, the polynomials u(n;λ) and u(n+ 1;λ) do not share any
common zeros for any fixed n ≥ 0 and the same is true for χ(n;λ) and
χ(n+ 1;λ) as well as for γ(n;λ) and γ(n+ 1;λ). ♢
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Now let S be the “N -shift” operator

(Sf)(n) := f(n+N).

Our assumption a(n+N) = a(n) and b(n+N) = b(n) for all n ∈ Z implies
that the linear operator S maps solutions to solutions of for the same value
of λ (in other words, S commutes with L), and by exploiting this very simple
property we can derive the (Floquet) spectral theory of L.

For each λ ∈ C let W = W(λ) be the two-dimensional vector space of the
solutions. By the previous discussion, for each λ ∈ C the solutions u and
v of can be taken as a basis of W(λ), and the matrix of the operator S|W
with respect to the basis (u, v) is

S = S(λ) =

[
u(N ;λ) v(N ;λ)

−a(−1)u(N − 1;λ) −a(−1) v(N − 1;λ)

]
(we should not forget that the matrix S and the vector space W depend on
λ). Thus, S is the Floquet (or monodromy) matrix, and the fact that a(n)
is N -periodic yields

detS(λ) ≡ 1.
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It follows that the characteristic polynomial of S(λ) has the form

det (S − ρI) = ρ2−∆(λ) ρ+1, where ∆(λ) := trS = u(N ;λ)−a(−1) v(N−1;λ).

Also, it is easy to check that ∆(λ) can be expressed in terms of the solutions
χ(n;λ) and γ(n;λ) as

∆(λ) = χ(N ;λ) + γ(N + 1;λ).

The quantity ∆(λ) is the (discrete) Hill discriminant of L and it follows that
it is a polynomial of λ of degree N having the form

∆(λ) =

(−1)N

λN −B0Nλ
N−1 +

 ∑
1≤j<k≤N

b(j) b(k)−
N∑
j=1

a(j)2

λN−2 + · · ·

 .

The eigenvalues ρ1(λ) and ρ2(λ) of S are the Floquet multipliers, while their
corresponding eigenvectors ϕ1(n;λ) and ϕ2(n;λ) are the Floquet solutions
so that

ϕj(n+N) = (Sϕj)(n) = ρjϕj(n), j = 1, 2.

We have

ρ1(λ) ρ2(λ) ≡ 1 and ρ1(λ) + ρ2(λ) = ∆(λ),

so that

ρ1(λ), ρ2(λ) =
∆(λ)±

√
∆(λ)2 − 4

2
.
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Let us also notice that S(λ) can have a Jordan anomaly only if ρ1(λ) =
ρ2(λ) = ±1 (equivalently, only if ∆(λ) = ±2) and in the presence of such
an anomaly the matrix S(λ) is similar to the canonical matrix[

±1 1
0 ±1

]
.

If this is the case, then there is only one Floquet solution ϕ(n) satisfying
ϕ(n+N) = ±ϕ(n), while there is a second solution g(n) (sometimes called
a generalized Floquet solution), linearly independent to ϕ(n), satisfying

g(n+N) = ±g(n) + ϕ(n) for all n ∈ Z.

Recall, however, that even if ρ1(λ) = ρ2(λ) = ±1, the Floquet matrix may
still be diagonalizable (and, hence, S(λ) = ±I, where I is the 2× 2 identity
matrix), in which case we have coexistence of two periodic (if S(λ) = I) or
antiperiodic (if S(λ) = −I), linearly independent Floquet solutions.
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Remark. Suppose that a function ϕ(x) satisfies

ϕ(x+N) = ρϕ(x) for all x ∈ R,

where ρ ̸= 0 is a constant. We write

ρ = eβN

and set
p(x) := e−βxϕ(x).

Then, p(x) is N -periodic and ϕ(x) can be written as

ϕ(x) = eβxp(x), where p(x+N) = p(x).

Suppose now that g(x) satisfies

g(x+N) = ρg(x) + ϕ(x) for all x ∈ R.

We set
p1(x) := e−βxg(x)− x

Nρ
p(x).

Then,

p1(x+N) = e−βxe−βN [ρg(x) + ϕ(x)]− x

Nρ
p(x)− 1

ρ
p(x) = p1(x).

Therefore, g(x) can be expressed as

g(x) = eβxp1(x) +
x

Nρ
eβxp(x) = eβxp1(x) +

x

Nρ
ϕ(x),

where p1(x) and p(x) are N -periodic.
Finally, let us mention that all the above are valid if the functions are defined
only for x ∈ Z, provided, of course, that N ∈ Z. ♢
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It is sometimes more convenient to view ρ1(λ) and ρ2(λ) as the two branches
of a (single-valued) analytic function ρ(λ) defined on the Riemann surface
Σ of the function

√
∆(λ)2 − 4. Then,

ρ(λ) =
∆(λ) +

√
∆(λ)2 − 4

2

and ρ(λ) can be called the Floquet multiplier associated to L. Let us notice
that, since ∆(λ)2−4 is a polynomial of even degree, Σ has two points at ∞.
If Σfin denotes the set of finite points of Σ (namely Σ minus its two points
at ∞), then ρ(λ) has neither zeros nor poles in Σfin. As for the two points
at ∞ of Σ, since ∆(λ) has degree N it follows that at one of these points
ρ(λ) has a zero of multiplicity N , while at the other it has a pole of order
N . Also,

∆(λ) = ρ(λ) +
1

ρ(λ)

and (ii) that
ρ′(λ)

ρ(λ)
=

∆′(λ)√
∆(λ)2 − 4

.
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The Floquet solutions too can be viewed as the two branches of a mero-
morphic function defined on Σ. First we normalize them so that ϕ1(0;λ) =
ϕ2(0;λ) = 1. It, then, follows that ϕ1(n;λ) and ϕ2(n;λ) are the branches of
the function

ϕ(n;λ) = u(n;λ)− u(N ;λ)− ρ(λ)

v(N ;λ)
v(n;λ).

As we have already mention, degλv(N ;λ) = N − 1 (where degλv(N ;λ)
denotes the degree of v(N ;λ) viewed as a polynomial of λ). Hence, ϕ(n;λ),
as a function of λ, can have at mostN−1 poles in Σfin counting multiplicities
(in the non-self-adjoint case the zeros of v(N ;λ) are not necessarily simple
— we will see an example where v(4;λ) has a triple zero).
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Having ∆(λ) and r(λ), the spectrum σ(L) of L can be characterized as

σ(L) = {λ ∈ C : ∆(λ) ∈ [−2, 2 ]} ⇔ σ(L) = {λ ∈ C : |ρ(λ)| = 1},

which implies that σ(L) is a finite union of bounded analytic arcs lying in
the complex plane (notice that |ρ1(λ)| = 1 if and only if |ρ2(λ)| = 1).

The adjoint operator L∗ of L is given by the formula

(L∗w)(x) = a(n)w(n+ 1) + a(n− 1)w(n− 1) + b(n)w(n), n ∈ Z,

where the bar denotes complex conjugation. Hence L is self-adjoint if and
only if a(n) and b(n) are real-valued. In general we have

σ(L∗) = σ(L),

namely λ ∈ σ(L∗) if and only if λ ∈ σ(L). If in particular σ(L) ⊂ R, then
σ(L∗) = σ(L).
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16.1 Floquet Spectrum; Periodic and Antiperiodic Eigenval-
ues

Other ways to express the spectrum are

σ(L) = {λ ∈ C : ∆(λ) = 2 cos(κ), 0 ≤ κ ≤ π}

and
σ(L) = {λ ∈ C : r1(λ) = eiκ, 0 ≤ κ ≤ π}.

Thus, if for a given κ ∈ [0, π], we introduce the Floquet spectrum

σκ(L) := {λ ∈ C : ∆(λ) = 2 cos(κ)},

then σ(L) can be written as the disjoint union

σ(L) =
⋃

0≤κ≤π

σκ(L).

Clearly, the Floquet spectrum σκ(L) is the set of zeros of the N -th degree
polynomial

Fκ(λ) := ∆(λ)− 2 cos(κ).

Observe that F ′
κ(λ) = ∆′(λ) is independent of κ and has degree N − 1.

Thus, if λ is a multiple zero of Fκ(λ), then λ must be a zero of ∆′(λ), and
there are at most N − 1 such zeros (which, of course, are independent of κ).
For each such value of λ there is at most one κ ∈ [0, π] for which Fκ(λ) = 0
(since cos(κ) is strictly decreasing on [0, π]). It follows that there are at most
N − 1 values of κ ∈ [0, π] for which Fκ(λ) has multiple zeros and, therefore,
if κ is not equal to any of those exceptional values, the Floquet spectrum
σκ(L) consists of N distinct κ-Floquet eigenvalues. In the self-adjoint case,
if κ ̸= 0, π, then Fκ(λ) has N distinct zeros.
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Let us first consider the case κ ∈ (0, π), namely κ ̸= 0 and κ ̸= π. Under this
assumption for κ, if λ ∈ σκ(L), we have r1(λ) = eiκ ̸= ±1 and, therefore,
λ is not a branch point of r(λ), hence there are two linearly independent
Floquet solutions ϕ1(n) = ϕ1(n;λ) and ϕ1(n) = ϕ2(n;λ) corresponding to
any particular λ ∈ σκ(L), satisfying

ϕ1(n+N) = eiκϕ1(n), n ∈ Z

and
ϕ2(n+N) = e−iκϕ2(n), n ∈ Z.

Then,
ϕ1(n) = eiκn/Np(n), where p(n+N) = p(n).

Notice that p(n) satisfies the boundary value problem

a(n)eiκ/Np(n+ 1) + a(n− 1)e−iκ/Np(n− 1) + b(n) p(n) = λp(n),

p(0) = p(N), p(1) = p(N + 1).

The problem can be written in the matrix form
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Mκp⃗ = λp⃗

where p⃗ is the column vector p⃗ := [p(0), . . . , p(N−1)]⊤ andMκ is the N×N
matrix (for N ≥ 3)

Mκ :=



b(0) a(0)eiκ/N 0 · · · a(N − 1)e−iκ/N

a(0)e−iκ/N b(1) a(1)eiκ/N · · · 0

0 a(1)e−iκ/N b(2) · · · 0
...

...
...

. . .
...

0 0 0 · · · a(N − 2)eiκ/N

a(N − 1)eiκ/N 0 0 · · · b(N − 1)


.

If κ is such that the polynomial Fκ(λ) has simple zeros, then Fκ(λ) must be
the characteristic polynomial of Mκ. Then, by continuity we have that

det (Mκ − λI) = ∆(λ)− 2 cos(κ) for all κ ∈ [0, π]

(and, consequently, by analytic continuation the above equation must hold
for all κ ∈ C). In particular, the spectrum of Mκ is σκ(L). Furthermore,
the (pure) eigenvectors of Mκ correspond precisely to the Floquet solutions.
Let us recall that in the self-adjoint case λ is a branch point of r(λ) if and
only if S(λ) has a Jordan anomaly (and such a λ must necessarily be real).
However, this is not always true in the non-self-adjoint case.
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For an integer m ≥ 1 let us consider the space

Pm := {f(n) : f(n+m) = f(n) for all n ∈ Z},

namely the set of m-periodic sequences over the complex numbers. Obvi-
ously, Pm is a vector space of (complex) dimension m. In the case where m
is a multiple of N , the operator L, having N -periodic coefficients a(n) and
b(n), maps Pm into Pm. In particular, for m = 2N the operator L maps
P2N into P2N . As a basis of P2N we can choose the sequences

ej(n) := δjn, n ∈ Z, j = 1, . . . , 2N,

where δjn is the Kronecker delta. Then, the 2N × 2N matrix of L|P2N
with

respect to that basis is
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L2N :=



b(1) a(1) 0 · · · 0 0 a(2N)
a(1) b(2) a(2) · · · 0 0 0
0 a(2) b(3) · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · b(2N − 2) a(2N − 2) 0
0 0 0 · · · a(2N − 2) b(2N − 1) a(2N − 1)

a(2N) 0 0 · · · 0 a(2N − 1) b(2N)


,

where a(n + N) = a(n) and b(n + N) = b(n). Notice that the matrix
L2N is symmetric, but not Hermitian, unless, of course a(n) and b(n) are
real-valued, in which case L2N is real symmetric (hence Hermitian) and its
associated operator L|P2N

is self-adjoint.

It follows that the eigenvectors of L|P2N
(in P2N ), being 2N -periodic solu-

tions, are precisely theN -periodic andN -antiperiodic (linearly independent)
solutions. Also, the spectrum of the operator L|P2N

, i.e. the set of eigenval-
ues of the matrix L2N , coincides with the set of periodic and antiperiodic
eigenvalues of L, that is the zeros of the polynomials ∆(λ)−2 and ∆(λ)+2.
We know that ∆(λ) has degree N . Hence the polynomial ∆(λ) − 2 has at
most N distinct zeros and the same is true for ∆(λ) + 2. Obviously, these
two polynomials cannot have common zeros. On the other hand ∆(λ) − 2
and ∆(λ)+ 2 have the same derivative, namely ∆′(λ), from which it follows
that ∆(λ)2− 4 has at least N +1 distinct zeros (the derivative of ∆(λ)2− 4
is 2∆(λ)∆′(λ) and ∆(λ) does not have common zeros with ∆(λ)2 − 4).

∆(λ)2 − 4 is a monic polynomial of degree 2N , i.e. its leading term is λ2N .
Also, for generic a(n) and b(n) we have that ∆(λ)2−4 has 2N simple zeros.
Therefore, the characteristic polynomial of L2N is

det (L2N − λI) = ∆(λ)2 − 4.
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16.2 Certain Classes of Isospectral Operators

Let al(n) := a(n + l) and b l(n) := b(n + l), where l ∈ Z, and consider the
operator

(Llw)(n) := al(n)w(n+ 1) + al(n− 1)w(n− 1) + b l(n)w(n), n ∈ Z.

Since
ϕj(n+ l +N ;λ) = rj(λ)ϕj(n+ l;λ), j = 1, 2.

we can see that L and Ll have the same multiplier r(λ) and, consequently,
the same discriminant. Hence, σ(Ll) = σ(L).

Also, if a♯(n) := a(−n), b ♯(n) := b(−n), and L♯ is the operator associated
to a♯ and b ♯, then ϕ(−n;λ) is a Floquet solution of L♯w = λw if and only if
ϕ(n;λ) is a Floquet solution of Lw = λw. It follows that L and L♯ have the
same multiplier, the same discriminant, and the same spectrum.

Proposition 1. Suppose τ(n) = 1 or −1 and τ(n+N) = τ(n) for all n ∈ Z.
Let a(n) and b(n) be the coefficients of the (N -periodic) Jacobi operator
L and consider the operator L̂ whose coefficients are â(n) := τ(n)a(n) and
b̂(n) := b(n). If ∆(λ) and ∆̂(λ) are the discriminants of L and L̂ respectively,
then

∆̂(λ) = (−1)ν(τ)∆(λ), where ν(τ) := #{n : τ(n) = −1, 0 ≤ n ≤ N−1}

(#S denotes the cardinality of the set S). In particular, σ(L̂) = σ(L).
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Motivated by Proposition 1 we introduce the following equivalence relation
between Jacobi operators.

Definition. Two Jacobi operators L and L̂ (of complex coefficients) are
called equivalent, symbolically L ∼ L̂, if their associated coefficients a(n),
b(n), â(n), and b̂(n) are related as â(n) = τ(n)a(n) and b̂(n) = b(n) for all
n ∈ Z, where τ(n) = 1 or −1.

In other words, L ∼ L̂, if a(n)2 = â(n)2 and b̂(n) = b(n) for all n ∈ Z.

Remark. Clearly, in the N -periodic case, if the coefficient a(n) of L satisfies
the normalization, then the coefficient â(n) = τ(n)a(n) of L̂ satisfies it if and
only if ν(τ) satisfies (−1)ν(τ) = 1 (i.e. ν(τ) is even). Thus, if the coefficients
of both L and L̂ satisfy the normalization and L ∼ L̂, then ∆̂(λ) = ∆(λ).
♢
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16.3 The Dirichlet Spectrum

Let us look at the Dirichlet-type boundary value problem (N ≥ 2)

(Lψ)(n) = a(n)ψ(n+ 1) + a(n− 1)ψ(n− 1) + b(n)ψ(n) = µψ(n) (2)

ψ(0) = ψ(N) = 0 (3)

(notice that ψ(n) can be extended for all n ∈ Z). Clearly, the eigenval-
ues of the problem are the zeros of the polynomial v(N ;λ). As we have
seen degλv(N ;λ) = N − 1, hence there are N − 1 Dirichlet eigenvalues
µ1, . . . , µN−1, counting multiplicities. Hence,

v(N ;λ) = (−1)N
N−1∏
j=1

(λ− µj) and γ(N ;λ) = (−1)Na(0)

N−1∏
j=1

(λ− µj)

In the case where a(n) and b(n) are real-valued, the problem (2)–(3) is self-
adjoint and hence the eigenfunctions form a basis of the underlying vector
space, which is clearly (N−1)-dimensional. Since for each µj we cannot have
more than one Dirichlet eigenfunction (up to linear independence), it follows
that in the real case the zeros of v(N ;λ) are real and simple (and between
any two bands of the spectrum there is exactly one Dirichlet eigenvalue).
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However, this is not always true in the case of nonreal a(n), b(n). For
example, if N = 4 and a(n) ≡ −1, then

v(4;λ) = −[λ− b(1)][λ− b(2)][λ− b(3)]) + λ− b(1) + λ− b(3),

and the choice b(1) = −b(3) =
√
2 i and b(2) = 0 yields v(4;λ) = −λ3, hence

µ1 = µ2 = µ3 = 0. Fixing b(4) = 0 gives a specific “pathological” example,
namely

a(n) ≡ −1, b(n) =
in − (−i)n√

2
.

We also have the “trace formula”

µ1 + · · ·+ µN−1 = b(1) + · · ·+ b(N − 1),

which can be also written as

µ1 + · · ·+ µN−1 = B0N − b(0).

Also, since

∆(λ)2 − 4 =
{
λ2N − 2 [b(1) + · · ·+ b(N)]λ2N−1 + · · ·

}
,

it follows that

2N−1∑
j=0

λj = 2 [b(1) + · · ·+ b(N)] = 2B0N,

where λj , j = 0, 1, . . . , 2N − 1, are the zeros of ∆(λ)2 − 4 (counting multi-
plicities), namely the periodic and antiperiodic eigenvalues. Furthermore,

2N−1∑
j=0

λj − 2
N−1∑
j=1

µj = 2b(0).

Finally, let us mention that the Dirichlet eigenfunction ψ(n), extended to
Z, is always a Floquet solution.
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16.4 The Unperturbed Case

If a(n) ≡ −1 and b(n) ≡ 0 (viewed as N -periodic functions), then the
operator L reduces to the unperturbed operator(

L̃w
)
(n) := −w(n+ 1)− w(n− 1), n ∈ Z,

and equation (1) becomes(
L̃w
)
(n) = −w(n+ 1)− w(n− 1) = λw(n), n ∈ Z.

A tilded quantity will be always associated with the unperturbed case.
It is convenient to introduce a new spectral parameter z related to λ as

z + z−1 := −λ.

The solutions χ and γ in the unperturbed case become

χ̃(n;λ) =
z1−n − zn−1

z − z−1
, and γ̃(n;λ) =

zn − z−n

z − z−1
.

In particular, for λ = −2 (equivalently z = 1) we have

χ̃(n;−2) = 1− n and γ̃(n;−2) = n,

while for λ = 2 (equivalently z = −1) we have

χ̃(n; 2) = (−1)n−1n and γ̃(n; 2) = (−1)n−1(n− 1).

By straightforward induction we can also see that the solution γ̃(n;λ), n ≥ 3,
expanded in descending powers of λ, has the form

γ̃(n;λ) = (−1)n−1λn−1 + (−1)n(n− 2)λn−3 + · · ·
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The discriminant of the unperturbed operator is

∆̃N (λ) := zN + z−N =

(
−λ+

√
λ2 − 4

2

)N

+

(
−λ−

√
λ2 − 4

2

)N

.

Also, from the fact that for n ≥ 2 we have (in the unperturbed case) that
ũ(n;λ) = −ṽ(n− 1;λ), we obtain the expansion

∆̃N (λ) = (−1)NλN − (−1)NNλN−2 + · · · , for N ≥ 2.

Thus, in particular, the coefficient of λN−1 in ∆̃N (λ) is 0.
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the Floquet multiplier becomes

ρ̃(λ) = zN =

(
−λ+

√
λ2 − 4

2

)N

,

while the spectrum is

σ
(
L̃
)
= [−2, 2].

Furthermore, if we set

zk := eiπk/N , k = 0, 1, . . . , 2N − 1,

and

λ̃k := −
(
zk + z−1

k

)
= −2 cos

(
πk

N

)
, k = 0, 1, . . . , 2N − 1,

then λ̃0 = −2, λ̃N = 2 and λ̃k = λ̃2N−k for k = 1, . . . , N −1. In addition, λ̃0
and λ̃N are simple zeros of ∆̃N (λ)2−4, while λ̃k, k = 1, . . . , N−1, are double
zeros of ∆̃N (λ)2− 4. It follows that λ̃0 = −2 is a periodic eigenvalue of L̃ of
geometric multiplicity 1, the corresponding eigenfunction being ϕ̃(n;−2) ≡
1, while λ̃N = 2 is a periodic (antiperiodic) eigenvalue of L̃ of geometric
multiplicity 1, if N is even (odd), the corresponding eigenfunction being
ϕ̃(n; 2) = (−1)n. Finally, each λ̃k = 2 cos(πk/N), k = 1, . . . , N − 1, is a
periodic (antiperiodic) eigenvalue of L̃ of geometric multiplicity 2, if k is
even (odd), while the associated eigenfunctions are ϕ̃1(n; λ̃k) = eiπkn/N and
ϕ̃(n; λ̃k) = e−iπkn/N (i.e. we have coexistence of two linearly independent
periodic or antiperiodic solutions).
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16.5 The Essentially Unperturbed Operators

Definition. We say that L is an essentially unperturbed operator if L ∼ L̃,
i.e. if a(n)2 ≡ 1 and b(n) ≡ 0.

From the above definition it follows that, for a given period N there are
2N essentially unperturbed operators, one of them being L̃. Obviously the
essentially unperturbed operators have real coefficients and hence they are
self-adjoint. Notice also that L is essentially unperturbed if and only if −L
is essentially unperturbed. If N is odd and L is essentially unperturbed,
then either L or −L satisfies the normalization.

Remark There are many results which can be proved by first checking that
they are valid for the essentially unperturbed case and then view the general
case as a continuous deformation of the unperturbed case. For instance, let
us show that for any real a(n) and b(n) (with a(n) ̸= 0 for all n) the zeros
of the polynomials v(N ;λ) and v(N + 1;λ) interlace. In the case of a(n) ≡
±1 and b(n) ≡ 0 the statement follows easily. Now, given any a(n) ̸= 0
and b(n) consider the family of quantities a(n; t) ̸= 0 and b(n; t), t ∈ [0, 1]
continuous in t, such that a(n; 0) = sgn[a(n)], a(n; 1) = a(n), b(n; 0) = 0,
and b(n; 1) = b(n) (e.g., b(n; t) = tb(n)). For each t the zeros of v(N ;λ; t)
and v(N+1;λ; t) (where v(n;λ; t) denotes the solution when the coefficients
of L are a(n; t) and b(n; t)), such that v(0;λ; t) = 0 and v(1;λ; t) = 1) are
real, being the Dirichlet eigenvalues of a self-adjoint operator. Furthermore,
as t moves continuously from 0 to 1 no zero of v(N ;λ; t) can “cross” a zero
of v(N+1;λ; t) due to our Remark. Hence, the relative position of the zeros
of v(N ;λ; t) and v(N+1;λ; t) is independent of t. Since for t = 0 their zeros
interlace, it follows that they also interlace for t = 1. ♢
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17 Inverse Spectral Considerations for the Case of
a Discrete Schrödinger Operator

(LSchrw)(n) := −w(n+ 1)− w(n− 1) + b(n)w(n), n ∈ Z.

Proposition 2. In the case L = LSchr the zeros of v(N ;λ) (counting mul-
tiplicities) together with the zeros of v(N + 1;λ) determine b(n).

Proof. As we have seen, the polynomial v(N ;λ) has N − 1 zeros counting
multiplicities. Hence, from its zeros we also know N . Then, we also know∑N−1

j=1 b(j). Likewise, from the zeros of v(N+1;λ) we can recover
∑N

j=1 b(n).
Hence, from the given data we can get b(N). Having b(N) we can use the
difference equation, satisfied by v(n;λ), in order to recover v(N − 1;λ).
Having now v(N ;λ) and v(N−1;λ) we can recover b(N−1) and v(N−2;λ).
We continue in the same manner until we recover b(j) for all j = 1, . . . , N .
■

The proposition can be viewed as a special case of a discrete counterpart of
a general result of Levitan and Gasymov, in the continuous case, which says
that a potential can be recovered from two spectra.
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(Counter)Example. Let us take N = 4 and consider the case a(n) ≡ −1
and b(n) such that

b(1) = b(4) = α+ σ
√
2, b(2) = b(3) = α− σ

√
2

2

where α is any fixed real (or complex) number and σ ∈ {−1, 1}. Then,

v(4;λ) = −u(5;λ) = −λ3 + 3αλ2 −
(
3α2 − 7

2

)
λ+ α3 − 7α

2
.

Hence, the sign σ cannot be recovered from v(4;λ) and u(5;λ). In other
words, there are two different potentials of period N = 4 corresponding to
the same spectral data {v(4;λ), u(5;λ)}.
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We, now, wish to consider the following question: Suppose we are given a
polynomial

∆(λ) = (−1)NλN +

N−1∑
k=0

ckλ
k.

Is there an N -periodic operator LSchr whose discrete Hill discriminant is the
given polynomial ∆(λ)?
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Let us first give a lemma of algebraic flavor.

Lemma 1. For k = 1, . . . , N let Sk(x1, . . . , xN ) be the elementary symmet-
ric polynomial in the variables x1, . . . , xN of degree k. Also, let pk(x1, . . . , xN ),
k = 1, . . . , N , be N given polynomials in x1, . . . , xN such that deg pk ≤ k−1.
Then, the cardinality of the set Λ of the distinct solutions (x1, . . . , xN ) ∈ CN

of the system of N equations

Sk(x1, . . . , xN ) = pk(x1, . . . , xN ), k = 1, . . . , N,

satisfies 1 ≤ #(Λ) ≤ N !.

The result follows from the simple observation that the system does not have
solutions at infinity and, consequently, Λ is a compact subset of CN . But,
then, by the Noether’s Normalization Theorem we can conclude that Λ must
be a finite set. Thus, the proof is finished by invoking Bézout’s Theorem.
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Theorem 1. Let c0, . . . , cN−1 be given complex numbers. Then, there exist
at least one and at most N ! different N -periodic potentials b(n) for which
the discrete Hill discriminant of the corresponding operator LSchr is

∆(λ) = (−1)NλN +

N−1∑
k=0

ckλ
k.
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18 Periodic Jacobi Operators Whose Spectrum is
a Closed Interval

Theorem 2. Suppose that the multiplier ρ(λ) has exactly two branch
points η, θ ∈ C. Then, η and θ are periodic or antiperiodic eigenvalues of L
satisfying (

η − θ

4

)N

= ±1

(in particular |η− θ| = 4) and the spectrum of L is the line segment joining
η and θ, namely

σ(L) = {λ ∈ C : λ = η + (θ − η) t, 0 ≤ t ≤ 1}.
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Theorem 3. Suppose that the spectrum σ(L) is a simple piecewise smooth
arc in the complex plane joining two (distinct) numbers η and θ. Then η
and θ are the only branch points of the multiplier r(λ). Consequently, due
to Theorem 1, σ(L) must be the line segment joining them.

Example. (i) If N = 2, a(n) = i(−1)n, and b(n) = 2(−1)n, then σ(L) =
[−2, 2].
(ii) If N = 4, a(n) = (1 + i) in/

√
2, and b(n) = (−1)n

√
2, then, again,

σ(L) = [−2, 2].
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18.1 Examples of Discrete Schrödinger Operators Whose Spec-
trum is the Interval [−2, 2]

Example. (i) For N = 2 (so that ∆̃2(λ) = λ2 − 2) and N = 3 (so that
∆̃3(λ) = −λ3 + 3λ) it is easy to check that b(n) ≡ 0.

(ii) For N = 4 (so that ∆̃4(λ) = λ4 − 4λ2 + 2) the system becomes

b1 + b2 + b3 + b4 = 0,

b1b2 + b1b3 + b1b4 + b2b3 + b2b4 + b3b4 = 0,

b1b2b3 + b1b2b4 + b1b3b4 + b2b3b4 = 0,

b1b2b3b4 = b1b2 + b2b3 + b3b4 + b4b1.

It follows that b1, b2, b3, and b4 are the roots of the equation x4 + α = 0,
where

α = b1b2 + b2b3 + b3b4 + b4b1.

Writing b1, b2, b3, b4 = ±(1± i)α1/4/
√
2 and substituting in the above equa-

tion yields α = 0 or α = 4. From the value α = 0 we only get the obvious
solution b(n) ≡ 0, whereas the value α = 4 yields a total of eight distinct
solutions:
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
b1
b2
b3
b4

 =


1 + i
1− i
−1 + i
−1− i

 ,


−1− i
1 + i
1− i
−1 + i

 ,


−1 + i
−1− i
1 + i
1− i

 ,


1− i
−1 + i
−1− i
1 + i


and 

b1
b2
b3
b4

 =


1− i
1 + i
−1− i
−1 + i

 ,


−1 + i
1− i
1 + i
−1− i

 ,


−1− i
−1 + i
1− i
1 + i

 ,


1 + i
−1− i
−1 + i
1− i

 .
Notice that the last three solutions are the cyclic permutations of the first
solution, while the last four solutions are the complex conjugates of the first
solutions. The first solution corresponds to the potential

b(n) = −1 + i

2
in − i(−1)n − 1− i

2
(−i)n,

while the other seven solutions correspond to the shifts of this potential,
namely b1(n), b2(n), and b3(n), and to the complex conjugates of those
four potentials (changing b(n) to b♯(n) = b(−n) does not produce any new
solutions). All these eight potentials, as well as the trivial potential b(n) ≡ 0
have spectrum [−2, 2]. Thus, there are only nine distinct solutions, while
4! = 24.
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(iii) For N = 5 (so that ∆̃5(λ) = −λ5 + 5λ3 − 5λ) the system becomes

S1(b1, b2, b3, b4, b5) = 0,

S2(b1, b2, b3, b4, b5) = 0,

S3(b1, b2, b3, b4, b5) = 0,

S4(b1, b2, b3, b4, b5) = b1b2 + b2b3 + b3b4 + b4b5 + b5b1,

S5(b1, b2, b3, b4, b5) = b1b2b3 + b2b3b4 + b3b4b5 + b4b5b1 + b5b1b2.

We can find some (nontrivial) solutions by looking for solutions such that
bj = 0 for some j, say b5 = 0. Then, the system becomes

S1(b1, b2, b3, b4) = S2(b1, b2, b3, b4) = S3(b1, b2, b3, b4) = 0,

b1b2b3b4 = b1b2 + b2b3 + b3b4,

b1b2b3 + b2b3b4 = 0.

(although we have five equations with four unknowns, as we will see the
resulting system has nine distinct solutions). If b2b3 = 0, then we must have
bj = 0 for all j = 1, . . . , 5. Thus, let us assume b2b3 ̸= 0. In this case the
last equation of the system can be simplified as

b1 + b4 = 0.

As in the case (ii) it follows that b1, b2, b3, and b4 are the roots of the
equation x4 + α = 0, where

α = b1b2 + b2b3 + b3b4.

Writing b1, b2, b3, b4 = ±(1±i)α1/4/
√
2 and substituting above yields α = 0,

α = 3 + 4i, or α = 3 − 4i. From the value α = 0 we only get the obvious
solution b(n) ≡ 0. The value α = 3 + 4i yields the solutions:
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
b1
b2
b3
b4
b5

 =


(1 + i)ρ
(1− i)ρ
−(1− i)ρ
−(1 + i)ρ

0

 ,


(1− i)ρ
−(1 + i)ρ
(1 + i)ρ
−(1− i)ρ

0

 ,


−(1− i)ρ
(1 + i)ρ
−(1 + i)ρ
(1− i)ρ

0

 ,


−(1 + i)ρ
−(1− i)ρ
(1− i)ρ
(1 + i)ρ

0

 ,
where

ρ :=

√√
5 + 2

2
+

√√
5− 2

2
i.

From the value α = 3 − 4i we get another set of four solutions, which are
the complex conjugates of the above solutions.
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An amusing observation is that these eight solutions can be also expressed
as

b1 = ± 1√
ϕ
± i
√
ϕ, b2 = ±ib1, b3 = −b2, b4 = −b1, b5 = 0

(for all eight different choices of the plus/minus signs), where ϕ is the golden
ratio, i.e.

ϕ =
1 +

√
5

2
.

Finally, the cyclic permutations of the solutions and their complex con-
jugates produce a set of thirty two new solutions. The transformation
b(n) → b(−n) does not yield any new solutions. Thus we have found a
total of forty distinct solutions, plus the obvious (trivial) solution b(n) ≡ 0.
Here we do not claim that we have found all the distinct solutions (since
5! = 120, it is possible that more solutions exist).
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18.2 The General Operator

We now consider again the more general Jacobi operator L. We are inter-
ested in the case where the spectrum σ(L) is a simple piecewise smooth arc
in the complex plane joining the numbers η and θ. Then, by Theorem 2 we
can assume, essentially without loss of generality that σ(L) = [−2, 2].
The following theorem is the discrete analog of a result of V. Guillemin and
A. Uribe.

Theorem 4. Suppose that σ(L) = [−2, 2]. Then, the eigenvalues of L|P2N
,

where P2N is the vector space of 2N -periodic sequences, or, equivalently,
the eigenvalues of the matrix L2N , are

λk = λ̃k = −2 cos

(
πk

N

)
, k = 0, 1, . . . , N.

Furthermore, for k = 1, . . . , N −1, either there are two linearly independent
eigenfunctions (in P2N ) corresponding to the eigenvalue λk or there is a two-
dimensional generalized eigenspace (subspace of P2N ) of L|P2N

associated
to λk.
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Remark. A side product of Theorem 4 is that if σ(L) = [−2, 2], then for
λ = −2 and λ = 2 there is only one Floquet solution and consequently
the Floquet matrices S(−2) and S(2) have a Jordan anomaly (at the same
time, r(λ) has a branch point at λ = ±2; recall, also, that r(−2) = 1 and
r(2) = (−1)N ).

♢

Example 4. Regarding the case N = 4: In the unperturbed case the matrix
L8 is similar to the diagonal matrix diag [−2,−

√
2,−

√
2, 0, 0,

√
2,
√
2, 2]. As

for the eight cases presented in our Example for N = 4, the associated
matrix L8 is similar to the Jordan canonical matrix

−2 0 0 0 0 0 0 0

0 −
√
2 1 0 0 0 0 0

0 0 −
√
2 0 0 0 0 0

0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0

0 0 0 0 0
√
2 1 0

0 0 0 0 0 0
√
2 0

0 0 0 0 0 0 0 2


.
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Finally, we present a Borg-type theorem for the general operator L with
complex coefficients.

Theorem 5. Suppose that σ(L) = [−2, 2] and that the matrix L2N is
diagonalizable (i.e. it has 2N linearly independent pure eigenvectors). Then:
(i) If N is odd, we must have b(n) ≡ 0 and a(n)2 ≡ 1, i.e. L is an essentially
unperturbed operator.
(ii) If N is even, say N = 2M , then b(n) ≡ 0 and a(n)2 = 1+(−1)ns, where
s2 = 1− e2kπi/M for some k ∈ {0, 1, . . . ,M − 1}.
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Notice that in the case where N = 2M the theorem implies that a(n+2)2 =
a(n)2 for all n ∈ Z.
Theorem 5 has a nice corollary (which is essentially not new).

Corollary. If a(n) and b(n) are real-valued (equivalently, if L is self-adjoint)
and σ(L) = [−2, 2], then b(n) ≡ 0 and a(n)2 ≡ 1, i.e. L is an essentially
unperturbed operator.

Proof. For real-valued a(n) and b(n) the matrix L2N of (??) is real symmet-
ric and hence diagonalizable. Therefore, the corollary follows immediately
from Theorem 5 since, even in the case N = 2M , the assumption that a(n)
is real forces s to be 0 (if s2 is real, then s2 = 0 or s2 = 2; however, the
latter cannot happen since it would make a(n)2 strictly negative for certain
values of n). ■
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[27] Năıman, P.B., On the spectral theory of non-symmetric periodic Jacobi
matrices, Zap. Meh.-Mat. Fak. Harp̧rime kov. Gos. Univ. i Harp̧rime
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[35] Pöschel, J. and Trubowitz, E., Inverse Spectral Theory, Academic Press,
Inc., Harcourt Brace Jovanivich, Publishers, Orlando, Florida, 1987

79



[36] Rofe-Beketov, F.S., On the spectrum of non-selfadjoint differential op-
erators with periodic coefficients, Dokl. Akad. Nauk SSSR, 152, 1312–
1315 (1963); English transl. in Soviet Math. Dokl., 4, 1563–1566 (1963)

[37] Sansuc, J.-J. and Tkachenko, V.A., Spectral Parametrization of Non-
Selfadjoint Hill’s Operators, Journal of Differential Equations, 125,
366–384 (1996), Article no. 0035

[38] Serov, M.I., Certain Properties of the Spectrum of a Non-selfadjoint
Differential Operator of the Second Order, Soviet Math. Dokl., 1, 190–
192 (1960)

[39] Shafarevich, I.R., Basic Algebraic Geometry 1, Varieties in Projective
Space, Third Edition, Springer-Verlag Berlin Heidelberg, 2013

[40] Shin, K.C., On half-line spectra for a class of non-self-adjoint
Hill operators, Math. Nachr., 261-262, 171–175 (2003) DOI
10/1002/mana.200310119
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