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Introducing metric graphs – #1

Figure: Valentina Vetturi, Tails, 2023
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Introducing metric graphs – #2

Let

• E = {e1, e2, . . .} finite or countably infinite set (“edge set”)

• ℓ : E → (0,∞) (“edge lengths”)

• ∼ equivalence relation on V :=
⊔
e∈E

{0, ℓe} (“wiring”)

Define E :=
⊔
e∈E

[0, ℓe] and extend canonically ∼ to E .

Then G := E⧸∼ is a metric graph.

Its vertex set is V := V⧸∼; its volume is |G| :=
∑
e∈E

ℓe.
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G as a metric measure space

Introduce the function spaces C(G) and Lp(G), 1 ≤ p ≤ ∞,
as well as

H1(G) := {f ∈ C(G) ∩ L2(G) : f ′ ∈ L2(G)}.
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The bounded geometry case: 0 < infe∈ℓe and supe∈ℓe < ∞

Lemma (Nicaise 1987?; Berkolaiko–Kuchment 2013?)

a(f ) :=

∫
G
|f ′|2 dx , f ∈ dom(a) := H1(G)

is a closed quadratic form.

The Laplacian ∆G is the self-adjoint operator on L2(G) associated with a.

Proposition (Kramar–M.–Sikolya 2007)(
a,H1(G)

)
is a Dirichlet form; irreducible if G is connected.
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Recall: the heat kernel p(t, ·, y) associated with a Laplacian ∆ is the unique
solution of 

∂u

∂t
(t, ·) = ∆u(t, ·),

u(0, ·) = δy (·)

By Mercer’s Theorem, heat kernels are associated with Laplacians

• with Dirichlet BCs, on open Ω ⊂ Rd ;

• with Neumann BCs, on open Lipschitz Ω ⊂ Rd ;

• on smooth compact manifolds without boundary;

• ...
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Lemma (Roth 1984; Cattaneo 1999)

∆G is associated with a heat kernel pG , i.e.,

et∆
G
f (x) =

∫
G
pG
t (x , y)f (y) dy , t > 0.

Moreover, pG ∈ L∞(G × G).

Proof.
H1(G) ↪→ L∞(G) + Kantorovitch–Vulikh Theorem
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Definition (Directed paths)

(i) Either orientation e⃗ of an edge e is a bond

(ii) ∂−(⃗e) (resp. ∂+(⃗e)) denotes the initial (resp. the final) vertex of e⃗; e⃗1, e⃗2
are consecutive if ∂+(⃗e1) = ∂−(⃗e2).

(iii) Let v,w ∈ V. A directed path p⃗ is an sequence of consecutive bonds

p⃗ =
(
v, e⃗1, . . . , e⃗n,w

)
such that ∂−(⃗e1) = v and ∂+(⃗en) = w.

Notation: P(v,w) is the set of all directed paths between v and w.
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Theorem (Roth 1984; Borthwick–Harrell–Jones 2023)

If E is finite, the heat kernel of ∆G is given by

pG
t (x , y) =

1√
4πt

∑
p⃗∈P(x,y)

α(p⃗)e−
length(⃗p)2

4t
, ∀t > 0, x , y ∈ G.

Here

α(p⃗) :=
n−1∏
k=1

β(⃗ek , e⃗k+1),

where

β(⃗ek , e⃗k+1) :=

{
2

degG (∂+ (⃗ek ))
− δek ,ek+1 , if ∂+(ek) ∈ V \ VD,

−1, if ∂+(ek) ∈ VD.
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Example

v

w

e⃗1

e⃗2

e⃗3

e⃗4

For p⃗ = (v, e⃗1, e⃗2, e⃗3, e⃗4,w) ∈ P(v,w) one has

α(p⃗) = β(⃗e1, e⃗2) · β(⃗e2, e⃗3) · β(⃗e3, e⃗4)

=
(2
3
− 1

)
· (−1) · 2

3
=

2

9
.

More generally, α(p⃗) ∈ [−1, 1].

Corollary (Cattaneo 1999; Becker–Gregorio–M. 2021)

Roth’s formula extends to infinite graphs of bounded geometry.
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In the bounded geometry case, G is a geodesic space: for any x , y ∈ G there is
a path p⃗x,y of minimal length.

Proposition (M. 2007; Haeseler 2013)

0 < pG
t (x , y) ≤

c√
t
e−b

length(⃗px,y )
2

4t ∀t ∈ (0, 1], x , y ∈ G.

(Proof based on Davies’ trick. Is there a proof based on Roth’s formula?)
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Two functionals on Ω ⊂ Rd (Dirichlet)

∫
G
⟨et∆δx , δx⟩ dx =

∫
G
pt(x , x) dx =: HeatTrace(t,∆)

∥et∆1∥L1 =
∫
G

∫
G
pt(x , y) dx dy =: HeatContent(t,∆)

By the semigroup property + Gaussian estimates of et∆ on Ω ⊂ Rd

ct
d
2 HeatTrace(t,∆) ≤ HeatContent(t,∆) ≤ |Ω|

Does it also hold HeatTrace(t,∆) < ∞ ⇒ HeatContent(t,∆) < ∞?

HeatContent seams easier to study by methods of heat kernel analysis.
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Theorem (van den Berg–Davies 1989)

If Ω ⊂ Rd is horn-shaped and t ≥ 0, then TFAE:

• HeatTraces(∆) < ∞ for all s > t;

• HeatContents(∆) < ∞ for all s > t.

Theorem (van den Berg–Gilkey 1994)

HeatContent(t,∆) ≍ |Ω| −
∞∑
k=1

βkt
k
2 as t → 0.

(many further results by van den Berg, Burchard, Caputo, Gilkey, Gittins, Kirsten, Miranda jr,

Pallara, Paronetto, Rossi, Schmuckenschläger...)
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On combinatorial graphs:

• HeatTrace since Stark–Terras 1996, Chung–Yau 1997

• HeatContent since McDonald–Meyers 2003

On metric graph:

• HeatTrace since Roth 1984

• HeatContent since Colladay–Kaganovskiy–McDonald 2017
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The finite case
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Spectral theory in the finite case (#E < ∞)

−∆G has pure point spectrum: its eigenvalues are

0 = µ1(∆
G) < µ2(∆

G) ≤ µ3(∆
G) ≤ . . . ↗ ∞.

Theorem (Nicaise 1987; Band–Lévy 2017)

For any metric graph G on finitely many edges:

• µ2(∆
G) ≥ π2

|G|2 , with equality iff G=

If additionally G is doubly connected, then

• µ2(∆
G) ≥ 4π2

|G|2 , with equality iff G=
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Upper estimates

Theorem (Kennedy–Kurasov–Malenová–M. 2016; Band–Lévy 2017)

For any metric graph G on E ≥ 2 edges:

• µ2(∆
G) ≤ π2E2

|G|2 , with equality if G= or G=

(but not only!, cf. Kurasov–Muller 2021, M.–Pivovarchik 2023)

If additionally G is a tree with El leaves, then

• µ2(∆
G) ≤ π2E2

l
4|G|2 with equality iff G=

Many, many more estimates in terms of diameter, inradius, Cheeger constant,
first Betti number, length of cycles, avoidance diameter, mean distance, . . .
by Amini, Berkolaiko, Exner, Kostenko, Nicolussi, Post, Rohleder, Solomyak . . .
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Dirichlet conditions

Upon imposing Dirichlet conditions on a vertex set ∅ ̸= VD ⊂ V, one may
restrict a to

H1
0 (G; VD) := {f ∈ H1(G) : f (v) = 0 ∀v ∈ VD}.

Again, consider the self-adjoint operator ∆G;VD

on L2(G) associated with(
a,H1

0 (G; VD)
)
.

• (
a,H1

0 (G; VD)
)
is a Dirichlet form;

• If G has finitely many edges, ∆G;VD

has pure point spectrum with

0 < λ1(∆
G;VD

) < λ2(∆
G;VD

) ≤ λ3(∆
G;VD

) . . . ↗ ∞;

• ∆G;VD

is associated with a heat kernel pG;VD

such that

0 ≤ pG;VD

t (x , y) ≤ pG
t (x , y) ≤ 1
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Proposition∫
G
pG
t (x , x) dx ≤ |G|√

4πt
and lim inf

t↘0

√
t

∫
G
pG;VD

t (x , x) dx ≥ |G|√
4π

Proof.

• Upper bound: Gaussian estimate satisfied by the heat kernels of (et∆
G
)

(M. 2007)

• Lower bound: Kac’ “principle of not feeling the boundary”
(Post–Rückriemen 2018)

Corollary (Nicaise 1987)

Weyl’s law holds for ∆G :

lim
k→∞

µk(∆
G)

k2
= lim

k→∞

λk(∆
G;VD

)

k2
=

π2

|G|2

Proof.
Karamata’s Tauberian Theorem
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Geometric implications of Roth’s formula: a heat content formula

Theorem (Bifulco–M. 2024)

HeatContent(t,∆G;VD

) = |G| − 2
√
t√
π
|VD|+ 4

√
t

∑
p⃗∈P

VD
(G)

α(p⃗)H

(
length(p⃗)

2
√
t

)

for all t > 0.

• Here

H(x) :=
1√
π
e−x2 − xerfc(x)

for erfc(x) := 2√
π

∫∞
x

e−s2 ds, x ≥ 0; H maps [0,∞) to [0,∞) and is

strictly monotonically decreasing, 0 ≤ H(x) ≲ e−x2 ;

• PVD(G) is the set of all (non-trivial) directed paths in G starting and
ending at a vertex in VD.
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Sketch of the proof

Main steps:
1) Prove

HeatContent(t,∆G;VD ) = |G| +
2
√
t

√
π

|E| − 2
√
t
∑
e∈E

H

(
ℓe

2
√
t

)

+
√
t

∑
p⃗∈P(G)

α(p⃗)

(
H

(
ℓ(p⃗)

2
√
t

)
− H

(
ℓ(p⃗−)

2
√
t

)
− H

(
ℓ(p⃗+)

2
√
t

)
+ H

(
ℓ(p⃗±)

2
√
t

))
.

2) Use the strong decay properties of H to deduce that all these series are
convergent: study them individually.
3) Analyze terms on the RHS: tedious combinatorial proof to find that sums
over P(G) can be reduced to sums over PVD(G).
Key observation: Paths starting or ending at V \ VD yield a vanishing
contribution.
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Small-time behavior of HeatContent(t,∆G)

Corollary

For all 0 < t < ℓmin
2

2 lnDmax∣∣∣∣HeatContent(t,∆G;VD

)− |G|+ 2
√
t√
π
|VD|

∣∣∣∣ ≤ 4
√
t√

π dmax

e−
ℓ2min
4t

1− dmaxe
−

ℓ2
min
2t

.

In particular: HeatContent(t,∆G;VD

)
t→0+≍ |G| − 2

√
t√
π
|VD|+O

(√
te−

ℓ2min
4t

)

(to be compared with the small-time asymptotics by van den Berg–Gilkey!)
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A Caccioppoli-type result

Theorem (Bifulco–M. 2024)

Let H be a subgraph of G. Then

lim
t→0+

√
π

t

∫
H

∫
G\H

pG
t (x , y) dy dx = |∂H|.

Similar result for Ω ⊂ Rd under (very weak) geometric assumptions:
Miranda–Pallara–Paronetto–Preunkert 2007.
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Hadamard-type formula and surgery principles

Lemma (Bifulco–M. 2024)

Let Gs , s > 0 be obtained from G by perturbing the length of an edge. Then

d

ds

∣∣∣∣
s=ℓe0

HeatContent(t,∆Gs ;V
D

) = 1−2
∑

p⃗∈P
VD

(G)

α(p⃗)|p⃗|e0erfc
(
ℓ(p⃗)

2
√
t

)
, t > 0.

Lemma
If G̃ is obtained from G

• attaching a subgraph without Dirichlet vertices at a degree-1 vertex; or

• inserting an edge between adjacent edge; or

• mirroring G at some vertices in V \ VD; or

• cutting through the midpoint of a loop,

then HeatContent(t,∆G;VD

) ≤ HeatContent(t,∆G̃;VD

)
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Outlook: Further self-adjoint extensions of ∆

Lemma (Kuchment 2003)

If G has E < ∞ edges, an extension of
(
∆,

⊕
e∈E H

2
0 (0, ℓe)

)
on L2(G) is

self-adjoint iff its domain is of the form{
f ∈

⊕
e∈E

H2(0, ℓe) : f ∈ Y , f + Rf ∈ Y⊥

}

for some Y ≤ C4E and some Hermitian 4E × 4E-matrix R.

Here
f :=

(
fe(0), fe(ℓe)

)
e∈E

, f :=
(
−f ′e (0), f

′
e (ℓe)

)
e∈E

The extension has no Robin part if R ≡ 0.

Proposition (Kostrykin–Potthoff–Schrader 2007)

Roth’s formula extends to general self-adjoint extensions with no Robin part.

Proposition (Cardanobile–M. 2008)

The quadratic form associated with a self-adjoint extension with no Robin part
is a Dirichlet form iff the orthogonal projector of C4E onto Y is Markovian.
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The only other known exact formula: trace formula

Theorem (Roth 1984; Nicaise 1987; Kostrykin–Potthoff–Schrader 2007)

For a G with V vertices (VD of them Dirichlet) and E edges:

• pure standard conditions:∫
G
pG
t (x , x) dx =

|G|√
4πt

+
V − E

2
+

1√
4πt

∑
C

α(C)length(C̃)e−
length(C)2

4t

• Dirichlet conditions at VD:∫
G
pG;VD

t (x , x) dx =
|G|√
4πt

+
V − VD − E

2
+

1√
4πt

∑
C

α(C)length(C̃)e−
length(C)2

4t

• general self-adjoint conditions with no Robin part, scattering matrix S:∫
G
pG;S
t (x , x) dx =

|G|√
4πt

+ tr(S) +
1√
4πt

∑
C

α(C)length(C̃)e−
length(C)2

4t

All these formulae hold for all t > 0!
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The bounded geometry case
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Proposition (Becker–Gregorio–M. 2021)

∆+ V generates a positivity improving semigroup on all Lp(G) and on C0(G),
BUC(G) for any V ∈ L∞(G).

Proposition (Becker–Gregorio–M. 2021)

If the volume grows sub-exponentially, 0 is a simple eigenvalue of the
BUC(G)-realization of ∆G .
Away from the point spectrum and the Dirichlet spectrum, the continuous
spectrum of ∆G on Lp(G), C0(G) or BUC(G) can be characterized in terms of
transition matrices of random walks of infinite graphs in appropriate sequence
spaces.

Proposition (Becker–Gregorio–M. 2021)

The spectrum of ∆G on Lp(G) is p-independent.
A Feynman–Kac formula holds and a Gaussian-like estimate holds if
V ∈ C(G) ∩ L∞(G).
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The unbounded geometry case
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Given an infinite, locally finite G:
Consider the operator ∆G

min on L2(G) associated with the closable Dirichlet form

a(f ) :=

∫
G
|f ′|2 dx

dommin(a) := {f ∈ H1(G) : f finitely supported}

Exner–Kostenko–Malamud–Neidhardt 2018: Essential self-adjointness of ∆G
min

is related to essential self-adjointness of a weighted discrete Laplacian.

Kostenko–Nicolussi 2019: Spectral analysis of the Friedrichs extension of ∆G
min.
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Definition
Consider sequences U = (Un) of nonempty open connected subsets of G with
compact boundaries such that

. . .Un+1 ⊂ Un ⊂ Un−1 . . . and
⋂
n∈N

Un = ∅.

U = (Un) and U ′ = (U ′
n) are equivalent if for all n ∈ N there exist j , k, such

that U ′
j ⊂ Un and Uk ⊂ U ′

n.
An equivalence class γ of sequences is called an end of G.
γ has finite volume if |Un| < ∞ for some n.

Example

• Z has two ends: {+∞,−∞}
• Z2 has one end: {∞}
• the binary tree has uncountably many ends: ≃ [0, 1]
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An isoperimetric inequality for infinite metric graphs

Theorem (Carlson 2000; Düfel–Kennedy–M.–Plümer–Täufer 2023)

∆G has compact resolvent if |G| < ∞; in this case, µ2(∆
G) ≥ π2

|G|2 , with

equality iff G=

Ali Mehmeti–Nicaise 1993, Solomyak 2004, Kostenko–Nicolussi 2019:
∆G may have purely discrete spectrum even though |G| = ∞!
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Theorem (Kostenko–M.–Nicolussi 2022)

If |G| < ∞ and if (!) the domain of ∆G is contained in H1(G), then ∆G is
associated with a heat kernel and the generated semigroup is of trace class.

• A Roth-type kernel formula is unknown.

• No trace formula is known.

• No heat content formula is known.

39 / 49



Metric graphs The finite case The bounded geometry case The unbounded geometry case Torsional geometry

A class of more sophisticated examples

For α > 0, introduce the diagonal comb graph Gα by taking the interval
(0, 1], putting a vertex at 1

nα
, n ∈ N, and attaching to it an edge of length 1

nα
.

0 1

By Kostenko–M.–Nicolussi 2022: 0 is the only end and

• either |Gα| = ∞ and ∆Gα is essentially self-adjoint;

• or |Gα| < ∞ and the deficiency index of ∆Gα is 1: we impose a Neumann
condition at the end.

α > 1 ⇔ |Gα| < ∞ ⇒ ∆Gα has pure point spectrum.
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Phase transition in the spectrum of comb graphs

Theorem (Düfel–Kennedy–M.–Plümer–Täufer 2023)

1. For all α > 1
2
, ∆Gα has pure point spectrum.

2. For all α ∈ (0, 1
2
], ∆Gα has nonempty essential

spectrum.

0 1

Proof.
1. Kolmogorov–Riesz-type compactness theorem
2. Explicit construction of a Weyl sequence: inf σ(∆Gα) = 0 for α ∈ (0, 1

2
).
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Non-Weyl asymptotics

Proposition (Kennedy–M.–Täufer 2024)

The eigenvalues of ∆Gα satisfy

• for all α ∈ ( 1
2
, 1): for j large enough

cαj
4α−2 ≤ λj(Gα) ≤ Cαj

2α

• for α = 1: for j large enough

c

(
j

(log j)2

)2

≤ λj(G1) ≤ C

(
j

log j

)2

• for α > 1: for j ≥ 2
j2π2

4|Gα|2
≤ λj(Gα) ≤

j2π2

4

Examples of non-Weyl asymptotics already known for quantum graphs on fractals:

Alonso-Ruiz–Freiberg 2017, wrt non-Lebesgue measure.
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Proof.

0

S

1

• Split the graph in a sparse part of finite volume and a dense part of small
mean distance.

• Apply known upper/lower estimates for eigenvalues of metric trees
(Berkolaiko–Kennedy–Kurasov–M. 2017)

• Use domain monotonicity.
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Torsional geometry
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Torsion of metric graphs

Let

sup
u∈H1

0 (G;VD )

(∫
G u dx

)2

∥u′∥2
L2

=: T (∆G;VD

);

the maximizer is the torsion function of G, i.e., the only solution on{
−∆v(x) = 1, x ∈ G,

v(v) = 0, v ∈ VD ,

and
T (G; VD) = ∥v∥L1

is called torsional rigidity of G wrt VD.
Observe: v(x) =

∫∞
0

et∆G 1(x) dx , hence

T (∆G;VD

) =

∫ ∞

0

HeatContent(t,∆G;VD

) dt.
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Theorem (Mondino–Vedovato 2021; M.–Plümer 2023)

For any metric graph G on finitely many edges:

• T (∆G;VD

) ≤ |G|3
3

, with equality iff G=

If additionally G is doubly connected, then

• T (∆G;VD

) ≤ |G|3
12

, with equality iff G=

Theorem (M.–Plümer 2023)

For any metric graph G on finitely many edges:

• T (∆G;VD

) ≥ 1
12

|G|3
|E|3 with equality iff G=
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Saint-Venant and Kohler-Jobin inequalities

Figure: A.J.C.B. de
Saint-Venant 1856

T (Ω) := sup
u∈H1

0 (Ω)

(∫
Ω
u dx

)2
∥∇u∥2

L2

Theorem (Pólya 1948; Pólya–Weinstein 1950)

Among all bounded, open domains Ω ⊂ Rd of given
(finite) volume, T (Ω) is maximized by the ball.

Among all bounded, open, not simply connected domains

Ω ⊂ Rd of given (finite) volume and given combined
volume of the holes, T (Ω) is maximized by the annulus.

Theorem (Kohler-Jobin 1978; Brasco 2013)

Among all open domains Ω ⊂ Rd of given (finite) volume, λ1(Ω)T
2

2+d (Ω) is
minimized by the ball, and only by it.
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Kohler-Jobin inequality on metric graphs

Theorem (M.–Plümer 2023)

For any metric graph G on finitely many edges:

•
(

π
3√24

)2

≤ λ1(G; VD)T (G; VD)
2
3 , with equality iff G=

If additionally G is doubly connected, then:

•
(

π
3√12

)2

≤ λ1(G; VD)T (G; VD)
2
3 , with equality iff G =

Schwarz/Steiner symmetrization will not work!
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Thank you for your attention!
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