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A simple periodic graph

G=129

Fix g, j=1,2,---,d.

Group: G=qiZ ® q@Z @ - - - ® qq

Fundamental domain: W =Z9/G = {n= (n1,n2,--- ,ng) : 1 < n; < q;}.
g= UgeG(g + W)
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Discrete periodic Schrodinger operators

@ Adjacency matrices + periodic potentials
o Let A be the discrete Laplacian on Z9: u(n),n € Z9,

(Bo)(n) = X (),

[[n’—nl|=1

where ||n|| = 329, |nj| for n = (ny, np, -, ng) € Z°.
e Periodic potentials V: V(n+g) = V(n) forall n€ Z9 and g € G.
@ The discrete periodic Schrédinger operator Hy = A + V:

(Hou)(n) = (Au)(n) + V(n)u(n),n € Z9.
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Periodic graphs and periodic graph operators

e G=G(V,&), V: vertices, £ : edges

o Group: G

e Fundamental domain: G/G (finite).

@ Invariants with respect to the group

@ Section 2 [Youssef-Sabri JMP 2023]: Z9-periodic graphs.
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An example: d =1

e For a vector u(n), n € Z,

(Au)(n) = u(n+ 1)+ u(n—1)

o V ={V(n)}nez is the potential.
e ¢ periodic: V(n+ q1) = V(n) for any n€ Z

o
0 o0 0
vi 1
Arvo|0 1V 0 0
0 1 0
0 1 Vg,
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Floquet transform in one dimension: k € [0, 1]

o Hh=A+V = @ke[O,I]DV(k)v where

Vi 1 0 0 e 2k

1 W 1 0
Dvik)= 0o 1 w 0
0 1

e?mik 0 1 V,

e A+ Vison Z (Hilbert Space (*(7Z))

® Dreqo,Dv (k)
Hilbert space L2(T,C%) (3%, [+ |f(n, k)|?dk < oo); Operators: Dy (k)f (-, k)
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Dy (k) in one dimension

@ Floquet-Bloch boundary condition
u(n+ q1) = e¥™*u(n),n € Z. (1)

e By writing out Hp = A+ V on {u(n)},n=1,2,--- | g1, we obtain Dy (k).
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Combinatorics: Laplacian on g periodic lattice on Z

—27ik
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Discrete Floquet transform

@ Fundamental domain W:

W:{n:(nhng,-..7nd)€Zd:]_Snquj,j:]_727...’d}'

Cardinality of W: Q = q1g2- - qq

Floquet-Bloch boundary condition
u(n+ qje;) = e™5iu(n),j=1,2,--- ,d. (2)

By writing out Hp = A + V as acting on the Q dimensional space {u(n),n€ W}, A+ V
with (2) translates into a Q x Q matrix Dy (k).

A + V is unitary equivalent to @<t Dv(k), where T =R/Z.
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Dy (k): qiZ @ qu7 periodic lattice on Z?
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Figure: Z2
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o Let Py(k,\)=det(Dy(k)— Al) (characteristic function).
e Many problems related to periodic Schrédinger operators: study Py (k, \)
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Algebraic Geometry

o Let zj = ek j=1,2,---,d. z=(z1,20,- ,24) and k = (ky, ka, -+ , kg).
(] Dv(z) = D\/(k)

o Py(z,\) =det(Dy(z) — ).

@ Py(z,\) is a Laurent polynomial of A and zj,z,- - , z4.
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Algebraic properties vs spectral properties

@ Real potentials V. Denote by )\J;/(k) the spectral band functions: eigenvalues of Dy (k),
k € [0,1]%:
A (k) S AY(K) < - S AT(K)
o Flat band: X, (k) = o
@ Py(z,\) has a factor of A — Ag

@ No flat band; Periodic operator has no eigenvalues
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Irreducibility for lattices 1Z @ - - - ® qqZ

Theorem 1 (L. GAFA 2022)

Let d > 3. Then for any \ € C, the Laurent polynomial Py/(z,\) (as a function of z) is
irreducible. )

Theorem 2 (L. GAFA 2022)

Let d = 2. Then the Laurent polynomial P\/(z, \) (as a function of z) is irreducible for any
A € C except for A = [V]. Moreover, if Py(z,[V]) is reducible, Py(z,[V]) has exactly two
non-trivial irreducible factors (count multiplicity).

When d = 2, for a constant function V, Py(z,[V]) has exactly two irreducible components.

Theorem 3 (L. GAFA 2022)

The Laurent polynomial Py/(z,\) (as a function of z and \) is irreducible.
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Proof of two conjectures

o Bloch variety: B(V) = {(k,\) € C/*1: Py (k,\) =0}
e Conjecture 1: Bloch variety is irreducible (modulo periodicity)

o Fermi variety: F\(V) = {k € C?: Py(k,\) =0}

o Conjecture 2: Fermi varieties F)(V/) are irreducible (modulo periodicity) for all A but
finitely many .

The two conjectures have been mentioned in many articles [Knorrer-Trubowitz 1990,
Battig-Knorrer-Trubowitz 1991, Battig 1992, Kuchment-Vainberg 2000, Kuchment 2016]
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Previous results: d = 2,3

e d =2, the Bloch variety (Py(z, \)) is irreducible [Battig 1988].

o d = 2, the Fermi variety is irreducible except for finitely many values of A
[Gieseker-Knorrer-Trubowitz 1993]

e d = 3, the Fermi variety is irreducible for every A [Battig 1992].

@ Previous approaches: construction of toroidal and directional compactifications of Fermi
and Bloch varieties.
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Further developments: more general lattices/polynomials

@ Fillman-L.-Matos JFA 2022
@ Fillman-L.-Matos JFA 2024
@ Faust-Garcia preprint 2023
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More about algebraic properties vs spectral properties

o (Ir)reducibility of Fermi variety is related the embedded eigenvalue problems
[Kuchment-Vainberg CPDE 2000], [Kuchment-Vainberg CMP 2006], [Shipman CMP
2014], [ L. GAFA 2022]

e Irreducibility of Bloch variety is related to quantum ergodicity, [L. JDE 2022 and
Mckenzie-Sabri CMP 2023]

@ properties of spectral band functions [L. GAFA 2022 and Filonov-Kachkovskiy CMP 2024]

o inverse problems: IDS [Gieseker-Knérrer-Trubotwitz 1993 Book], isospectrality [L. CPAM
2024 ] and Borg's Theorem [L. preprint 2023]
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Spectral bands

Real potentials V

e Eigenvalues of Dy (k), k € [0,1]%:
A (K) < Ny (k) < - < AD(K)

@ Spectral band functions: AJ}(k), m=1,2,---,Q.

o(a+Vv)=J7_la% bYl (3)

o Spectral gaps: (bY,ay,1) or ([by:ami1]) if bY < a¥.q
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Applications: embedded eigenvalues

Perturbed periodic operators:
H=A+V+yv,

where V is a real periodic potential and v is a decaying function on Z9.
Spectral bands:

o(A+ V)= lam byl op(A+ V) = 0.
Theorem 4 (L. GAFA 2022 )
If there exist constants C > 0 and v > 1 such that
[v(n)| < Ce71"",

then H = A+ V + v does not have any embedded eigenvalues, i.e., for any \ € |J(
is not an eigenvalue of H.

(5)
a5, by), A

v
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Special case

Assume |v(n)| < Ce™I"" for some C > 0 and v > 1. Then o,(A + v) N (—2d,2d) = 0 (no
embedded eigenvalues).

o o(A) = [-2d,2d].
e Compactly support v: [Isozaki-Morioka 2014]
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Proof of Corollary 5

@ Eigen-equation
(Au)(n) + v(n)u(n) = \u(n),n € Z°.

@ Prove by contradiction: A € (—2d,2d) and u € ¢?(Z9)
By the Fourier transform, one has that

ho(x)u(x) +1b(x) = Au(x). (6)
° d
ho(x) =2 Zcos 27X;
j=1
v = 3 vinu(n)e 2
nezd
u(x) = Z u(n) —2min-x
nezd
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Proof of Corollary 5

o u € L%(T9), ¢(x) is an entire function with order ﬁ +e.
’ o
X
u(x) = ———. 7
= (o) - )
e Claim: u(x) is an entire function with order % +e.

Then |u(n)| < Ce~I""™" which contradicts the unique continuation result.
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Explanation: Proof of the claim

does not work does not work

() () ()

Irreducibility d=2\=[V]
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What do we need for perturbed periodic operators?

@ Unique continuation results (standard arguments)
o Irreducibility of Fermi varieties ({x € C% : hg(x) — A = 0})

@ Real Fermi varieties have dimension d — 1 (standard arguments)
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Classical Borg's theorem

Let d = 1. The following statements are equivalent:
@ The potential V is a constant function.
@ A + V has no spectral gaps.
Remark: for the constant potential V = K, (A + V) = U%_,[a¥, bY] = K + [—2d, 2d]
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Borg's theorem in higher dimension: Wrong

© The analogue of Borg's theorem does not hold for d > 2.
@ Bethe-Sommerfeld Conjecture
© Continuous: Karpeshina, Parnovski, Sobolev, Veliev ....

@ Discrete: Han-Jitomirskaya, Embree-Fillman, Filonov-Kachkovskiy
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Geometric Borg's theorem

© Denote by B(V) C C9 x C Bloch variety of A + V:
B(V) = {(k,\) € C¥ x C : det(Dy/(k) — \) = 0}. (8)

@ Conjecture 3 [Kuchment, Kndrrer-Trubowitz, Avron-Simon]
The following statements are equivalent:
@ The real potential V is a constant function.
® There exists an entire function f(k) such that (k, f(k)) € B(V).
© For d =1, geometric Borg's theorem is equivalent to classical Borg's theorem
[Knérrer-Trubowitz, Avron-Simon].
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Geometric Borg's theorem for d = 2

© Knérrer-Trubowitz (continuous case): Conjecture 3 holds for d = 2.
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Main results: L. 2023

Theorem 6

Then the following statements are equivalent:
@ The real potential V is a constant function.
@ There exists an entire function f(k) such that (k, f(k)) € B(V).

Main theorem: Characterize the complex potentials such that the graph of the Bloch variety
contains an entire function
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Conclusion: methods

e Focus on the study of Py(k,\) = det(Dy(k) — Al) or Py(z,\).
@ Analysis approaches to obtain the algebraic properties of Py/(z, A).
e Math physics (spectral theory), complex analysis and combinatorics.
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Thank you
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