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Sturm–Liouville operator with frozen argument

Consider the operator

Ly := −y ′′(x) + p(x)y(x) + y(a)q(x), x ∈ (0, π), (1)

y ∈W 2
2 [0, π], y (α)(0) = y (β)(π) = 0, α, β ∈ {0, 1}. (2)

The coefficients p, q ∈ L2(0, π) are complex-valued. The value a ∈ [0, π]
is fixed.

Operators L are called Sturm–Liouville operators with frozen argument.
Unlike classical differential operators, they are non-local. By this reason,
study of operators with frozen argument requires development of
non-classical methods.

Comment
Non-locality is the opposite property to locality. Operator is local if the
value of the output function Ly at x ∈ (0, π) depends only on the values
of the input function in arbitrarily small vicinity (x − ε, x + ε).
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Non-local operators

Non-local operators appear in models of feedback-like phenomena.
Consider an example from [Kr].

For a vibrating wire of finite length l , denote by u(x , t) the lateral
displacement at x at time t. Let the wire be affected by a magnetic field
acting with a force K (x)[cu(0, t) + du(l , t)] per unit mass. The wave
equation takes the form

utt = s2uxx + K (x)[cu(0, t) + du(l , t)]. (3)

Separation of variables yields the equation

−y ′′(x)− K (x)

s2 (cy(0) + dy(l)) =
λ

s2 y(x). (4)

Kr Krall A.M. The development of general differential and general
differential-boundary systems, Rocky Mountain J. Math. (1975),
493–542.
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Operators with frozen arguments are closely related to operators with
integral boundary conditions.

Let frozen argument belong to one of the ends of the interval. For
definiteness, a = 0, α = 1, β = 0. Then, the adjoint operator to Ly in
L2(0, π) is given by

L∗y = −ϕ′′(x) + p(x)ϕ(x), x ∈ (0, π), (5)

ϕ ∈W 2
2 (0, π], ϕ(π) = 0, (6)

ϕ′(0 + 0) =

∫ π

0
q(t)ϕ(t) dt. (7)

Integral boundary conditions arise in studying diffusion processes, see
F. Feller W. The parabolic differential equations and the associated

semi-groups of transformations. Annals of Mathematics (1952),
pp. 468–519.

F2. Feller W. Diffusion processes in one dimension. Translations of the
AMS (1954), pp. 1–31.
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Perturbation theory point view

Consider an unperturbed operator:

Ty = −y ′′(x) + p(x)y(x), x ∈ (0, π),

y ∈W 2
2 [0, π], y (α)(0) = y (β)(π) = 0.

(8)

The operator T is a classical Sturm–Liouville operator with the
complex-valued potential p ∈ L2(0, π).

The operator L is a one-dimensional perturbation of T : L = T + A,
where

Ay = y(a)q(x), x ∈ (0, π). (9)

The range of values of A is a one-dimensional subspace in L2(0, π).
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Using results from the classical book [Kat], we obtain that the spectrum
L is discrete.
Kat Kato T., Perturbation Theory for Linear Operators (1966; 1995

Springer).

Theorem 5.35
The essential spectrum is conserved under a relatively compact
perturbation. More precisely, let T be closed and let A be T -compact.
Then T and T + A have the same essential spectrum.

The Sturm–Liouville operator T and Ay = y(a)q(x) satisfies the
conditions of the theorem, and the essential spectrum of T is empty.
(In fact, A is T -bounded and finite-dimensional ⇒ A is T -compact).
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Problem statement

Further, we study the eigenvalues {λn}n≥1 of the BVP

−y ′′(x) + p(x)y(x) + q(x)y(a) = λy(x), x ∈ (0, π),

y (α)(0) = y (β)(π) = 0.
(10)

We aim to study an inverse problem.

Inverse problem 1.
The numbers α, β ∈ {0, 1} and p ∈ L2(0, π) are known.
Given the spectrum {λn}n≥1, recover q ∈ L2(0, π).

In other words, we recover the perturbation A by the spectrum of T + A
if the unperturbed operator T is known. Note that the eigenvalues can
be multiple. We assume that each λk appears in the spectrum {λn}n≥1
as many times as its multiplicity.
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History note

First, inverse spectral problems were studied for p = 0, when

Ly = −y ′′(x) + y(a)q(x), x ∈ (0, l). (11)

The problem of recovering the operator by its spectrum was addressed
by many authors. A uniqueness of recovering depends on the value a
and on the boundary conditions.
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Rational case

Inverse problem 1 in the particular case p = 0 was studied completely.
First, results were obtained in the rational case a/l ∈ Q :

BBV Bondarenko N.P., Buterin S.A., Vasiliev S.V. An inverse spectral
problem for Sturm–Liouville operators with frozen argument, J.
Math. Anal. Appl. (2019).

BV Buterin S.A., Vasiliev S.V. On recovering a Sturm-Liouville-type
operator with the frozen argument rationally proportioned to the
interval length, J. Inv. Ill-posed Probl. (2019).

BK Buterin S., Kuznetsova M. On the inverse problem for
Sturm–Liouville-type operators with frozen argument: rational case,
Comp. Appl. Math. (2020).

In [BBV,BV,BK], all rational cases were studied, from the less general
assumptions to the most general ones.
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The approach to the inverse problem involves construction of the entire
characteristic function ∆(λ) by its zeros {λn}n≥1. It allows to recover
some function W ∈ L2(0, l) that contains information on q(x) as its
linear transform. The potential q is recovered uniquely if and only if the
linear transform is non-degenerate, which depends on a and the
boundary conditions. The complete characterization of degenerate and
non-degenerate combinations (a, α, β) was given in [BK]. An alternative
approach to the linear transform was developed in [Ts].

BK Buterin S., Kuznetsova M. On the inverse problem for
Sturm–Liouville-type operators with frozen argument: rational case,
Comp. Appl. Math. (2020).

Ts Tsai T-M, Liu H-F, Buterin S, Chen L-H, Shieh C-T.
Sturm–Liouville-type operators with frozen argument and
Chebyshev polynomials. Math Meth Appl Sci. (2022)
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Classification of rational cases

Let
a

l
=:

j

k
, j , k ∈ N, gcd(j , k) = 1.

Degenerate cases (non-uniqueness):

α = β = 0;

α = 1, β = 0 and k + j even;

α = β = 1 and k even;

α = 0, β = 1 and j even.


(12)

Non-degenerate cases (uniqueness):

α = 0, β = 1 and j odd;

α = 1, β = 0 and k + j odd;

α = β = 1 and k odd.

 (13)
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Irrational case

The approach from [BBV,BV,BK,Ts] is inapplicable to the irrational a/l .
Wang, Zhang, Zhao, and Wei [W] have proved that in this case, there is
always uniqueness. However, the question of the necessary and sufficient
conditions was left open.

W Wang Y.P, Zhang M., Zhao W., Wei X. Reconstruction for
Sturm–Liouville operators with frozen argument for irrational cases,
Applied Mathematics Letters (2021).
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A new unified approach to the both cases was developed in [K1]. The
main idea is to substitute into the characteristic function ∆(λ) the
eigenvalues of the unperturbed operator λ = µn. It allows obtaining
necessary and sufficient conditions along with the stability results,
see [K2].

K1 Kuznetsova M. Necessary and sufficient conditions for the spectra
of the Sturm–Liouville operators with frozen argument, Applied
Mathematics Letters (2022).

K2 Kuznetsova M. Uniform stability of recovering the Sturm-Liouville
operators with frozen argument, Results in Mathematics (2023).

The mentioned approach can be generalized for study of Inverse
problem 1 if p 6= 0. The difference is that we have to take into account
the multiplicities of µn.
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Another unified approach was offered in the work of Dobosevych and
Hryniv:

DH Dobosevych O., Hryniv R. Reconstruction of differential operators
with frozen argument, Axioms (2022).

They considered the operator with frozen argument within the
framework of the perturbation theory. Their approach essentially relies
on the self-adjointness of the unperturbed operator T . It is inapplicable
for studying our situation, since the function p is complex-valued.

Now, we proceed to studying the inverse problem by the spectrum of the
BVP L :

−y ′′(x) + p(x)y(x) + q(x)y(a) = λy(x), x ∈ (0, π), (14)

y (α)(0) = y (β)(π) = 0, (15)

in the general case p 6= 0. We will rely on some ideas from [K1–K2].
For simplicity, we put α = β = 0 (the other boundary conditions are
considered analogously).
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Preliminaries

First, we introduce auxiliary objects related to the unperturbed BVP L0 :

− y ′′(x) + p(x)y(x) = λy(x), x ∈ (0, π), (16)

y(0) = y(π) = 0.

Denote by Sa(x , λ) and Ca(x , λ) the solutions of equation (16) under
the initial conditions

Ca(a, λ) = 1, C ′a(a, λ) = 0, Sa(a, λ) = 0, S ′a(a, λ) = 1. (17)

The characteristic function of L0 is

∆0(λ) = Ca(0, λ)Sa(π, λ)− Sa(0, λ)Ca(π, λ). (18)

A number µn is an eigenvalue of L0 if and only if ∆0(µn) = 0. Denote
by {µn}n≥1 its spectrum, i.e. the sequence of the eigenvalues taken with
the account of algebraic multiplicities. 15 / 40



The following asymptotics is known:

µn = θ2
n, θn = n +

ω

πn
+
κn
n
, n ≥ 1, {κn}n≥1 ∈ `2. (19)

By mn we denote multiplicity of the eigenvalue µn. By asymptotics (19),
for a sufficiently large n, we have mn = 1. Without loss of generality, we
assume that equal values in the spectrum follow each other:

µn = µn+1 = . . . = µn+mn−1, n ∈ S,

S := {n ≥ 2 : µn 6= µn−1} ∪ {1}.
(20)

The index n ∈ S corresponds to the unique elements in {µn}n≥1.
The index k = n + ν runs through N, if n ∈ S and ν ∈ 0,mn − 1.

Example
Let µ1 = µ2 = µ3 = i and µn = n2 for n ≥ 4. Then, we have

S = {1, 4, 5, 6, . . .}, m1 = 3, m4 = m5 = m6 = . . . = 1.

For any valid example, S is obtained from N by exclusion of a finite
number of elements.
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Characteristic function of L

Characteristic function of the BVP with frozen argument has the form

∆(λ) = ∆0(λ)− Sa(π, λ)

∫ a

0
W (0, t, λ) q(t) dt

− Sa(0, λ)

∫ π

a
W (π, t, λ) q(t) dt, (21)

where W (x , t, λ) := Ca(t, λ)Sa(x , λ)− Ca(x , λ)Sa(t, λ). The spectrum
{λn}n≥1 of the BVP L is a sequence of the zeroes of ∆(λ) taken with
the account of multiplicities.
Using the known asymptotics for Sa(x , λ) and Ca(x , λ), by Rouche’s
theorem, we obtain that

λn = µn + o(n), n ≥ 1. (22)
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Necessary and sufficient conditions on the spectrum

The previous formula is only an approximation to the necessary and
sufficient conditions. We should obtain the more precise formula

λn = µn + bnκn, n ≥ 1, {κn}n≥1 ∈ `2, (23)

where {bn}n≥1 is a certain sequence depending on the BVP L0. This
sequence is bounded, but its members can be arbitrarily close to 0. In
particular, if bn = 0, then λn = µn, and this eigenvalue does not depend
on q. We say that λn degenerates, because it brings no information on q.
It can also occur that

bn = bn+1 = . . . = bn+kn−1 = 0,

µn = µn+1 = . . . = µn+kn−1, kn > 1.

In this case, formula (23) gives degeneration condition for kn subsequent
eigenvalues λn = λn+1 = . . . = λn+kn−1 = µn. We will have that µn is
an eigenvalue of L with the multiplicity not less than kn.
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First, we introduce a sequence {an}n≥1 :

an+ν =
n

ν!

∂νSa(π, λ)

∂λν

∣∣∣∣
λ=µn

, n ∈ S, ν = 0,mn − 1. (24)

Remind that Sa(x , λ) is the solution of the initial-value problem

−y ′′ + p(x)y = λy , y(a) = 0, y ′(a) = 1 (25)

(in other words, Sa(π, λ) is the characteristic function for the
unperturbed BVP on (a, π)).

Let rn be a multiplicity of µn as a zero of Sa(π, λ). Put

bn+ν =

{
an+ν , ν = 0, pn − 1,

1, ν = pn,mn − 1,
pn := max

(
1,min(rn,mn)

)
,

n ∈ S. (26)

In fact, bn+ν differs from an+ν only in finite number of elements
corresponding to mn > 1.
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Example
Let µ1 = µ2 = µ3 = i and µn = n2 for n ≥ 4. Then, we have

S = {1, 4, 5, 6, . . .}, m1 = 3, m4 = m5 = m6 = . . . = 1.

Thus, for K = 4 and n ≥ K , all mn = 1.

a1 = Sa(π, i), a2 =
∂Sa(π, i)

∂λ
, a3 =

∂2Sa(π, i)

∂λ2 ;

an = nSa(π, n2), n ≥ 4.

Let λ = i be a zero of Sa(π, λ) of order r1 = 1.
We have a1 = 0, a2 6= 0, while a3 can be arbitrary. Then,

p1 = 1, pn = 1, n ≥ 4,

b1 = a1 = 0, b2 = b3 = 1; bn = an, n ≥ 4.
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Theorem 1 (necessary and sufficient conditions)
For an arbitrary sequence {λn}n≥1 of complex numbers to be the
spectrum of the BVP L with some q ∈ L2(0, π), it is necessary and
sufficient to satisfy the formula

λn = µn + bnκn, n ≥ 1, {κn}n≥1 ∈ `2. (27)

Thus, for n ∈ Ω, the eigenvalue λn degenerates,

Ω = {n ∈ N : bn = 0} = {n + ν : n ∈ S, 0 ≤ ν < min(mn, rn)}.

The necessity part is proved by accurate application of asymptotic
expansions. The proof of the sufficiency part is constructive. We
consider the procedure of recovering q from the spectrum satisfying the
condition (27). This procedure allows us to investigate the uniqueness
and to find which additional data are needed in the case of
non-uniqueness.
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Procedure of recovering

For n ∈ S and ν = 0,mn − 1, we introduce

gn+ν(t) =
n1−α

(mn − ν − 1)!

∂mn−ν−1g(t, λ)

∂λmn−ν−1

∣∣∣∣
λ=µn

, (28)

where g(x , λ) is a solution of the initial-value problem

−y ′′(x) + p(x)y(x) = λy(x), x ∈ (0, π), y(0) = 0, y ′(0) = 1.

It is known that

g(x , ρ2) =
sin ρx

ρ
+ O

(
e |Im ρx |

ρ

)
.

Then, the sequence {gn(t)}n≥1 is an almost normalized sequence of
eigen- and associated functions of the operator Ty = −y ′′ + p(x)y with
Dirichlet boundary conditions.

Proposition
The functional sequence {gn(t)}n≥1 is a Riesz basis in L2(0, π).
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By the spectrum, we can uniquely reconstruct the characteristic function:

∆(λ) = π

∞∏
k=1

λk − λ
k2 . (29)

On the other side,

∆(λ) = ∆0(λ)− Sa(π, λ)

∫ a

0
W (0, t, λ) q(t) dt

− Sa(0, λ)

∫ π

a
W (π, t, λ) q(t) dt. (30)

For each n ∈ S, we differentiate the both parts of the formula
ν = 0,mn − 1 times and put λ = µn :

dn+ν =
ν∑
η=0

an+ν−ηξn+mn−1−η, n ∈ S, ν = 0,mn − 1, (31)

where

dn+ν = n2 ∆(ν)(µn)

ν!
, ξk :=

∫ π

0
gk(t)q(t) dt.
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Recovering the coefficients ξn :=
∫ π
0 gn(t)q(t) dt, n ∈ N, is equivalent

to recovering the potential q. Since {gn}n∈N is a Riesz basis, for any
sequence {ξn}n∈N ∈ `2, there corresponds a valid q ∈ L2(0, π).

One can see that in the relation

dn+ν =
ν∑
η=0

an+ν−ηξn+mn−1−η, n ∈ S, ν = 0,mn − 1, (32)

the values ak and dk are known (ak are constructed by the unperturbed
BVP, while dk are constructed by the characteristic function).

For each fixed n ∈ S, we can consider (32) as a system of mn linear
algebraic equations with respect to ξn, ξn+1, . . . , ξn+mn−1. Its unique
solvability depends on the properties of the coefficients
an, an+1, . . . , an+mn−1.
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For each fixed n ∈ S, (32) has the form
0 . . . 0 0 0 an
0 . . . 0 0 an an+1
0 . . . 0 an an+1 an+2
... . .

.
. .
.

. .
.

. .
. ...

an . . . . . . amn−3 amn−2 amn−1




ξn
ξn+1
ξn+2
...

ξn+mn−1

 =


dn
dn+1
dn+2
...

dn+mn−1


with a triangular matrix, where auxiliary diagonals contain equal
numbers.
If µn is a zero of Sa(π, λ) of multiplicity rn ≥ mn, then

an = an+1 = . . . = an+mn−1 = 0.

By the necessary conditions, dn = dn+1 = . . . = dn+mn−1 = 0, and the
system fully degenerates (but keeps compatibility). In this case, we have
no information on ξn, ξn+1, . . . , ξn+mn−1.
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Let µn be a zero of Sa(π, λ) of multiplicity rn < mn, then

an = an+1 = . . . = an+rn−1 = 0, an+rn 6= 0.

The first rn equations in the system degenerate, and there reminds a
system

0 . . . 0 0 an+rn

0 . . . an+rn an+rn+1
0 . . . an+rn an+rn+1 an+rn+2
... . .

.
. .
.

. .
. ...

an+rn . . . amn−3 amn−2 amn−1




ξn+rn

ξn+rn+1
ξn+rn+2

...
ξn+mn−1

 =


drn
drn+1
drn+2
...

dn+mn−1


which includes mn − rn equations with respect to ξn+rn , . . . , ξn+mn−1.
These variables are uniquely determined:

ξn+mn−ν =
1

an+rn

(
dn+rn+ν−1−

ν−1∑
η=1

an+rn+ηξn+mn−ν+η

)
, ν = 1,mn − rn.

The other variables ξn, . . . , ξn+rn−1 disappear, so they can not be found.
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We write the set of indices n such that ξn are can not be determined:

{n + ν : n ∈ S, 0 ≤ ν < min(mn, rn)} = Ω.

This set has been already used to denote the degenerating part of the
spectrum {λn}n∈Ω.

It turns out that a variation of {ξn}n∈Ω ∈ `2 does not influence the
spectrum {λn}n≥1. Thus, for a fixed spectrum {λn}n≥1, one can
construct the set of all iso-spectral potentials q varying {ξn}n∈Ω ∈ `2 or
find a unique q setting additionally {ξn}n∈Ω ∈ `2.

Inverse problem 2
Given the spectrum {λn}n/∈Ω and {ξn}n∈Ω, recover q ∈ L2(0, π).
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Uniqueness theorem

Consider another boundary value problem L̃ which differs from L only in
the potential q̃ :

−y ′′(x) + p(x)y(x) + q̃(x)y(a) = λy(x), x ∈ (0, π),

y(0) = y(π) = 0.

Theorem 2 (uniqueness theorem)
Let {λ̃n}n≥1 be the spectrum of another boundary value problem L̃ with
a potential q̃ ∈ L2(0, π), while ξ̃n =

∫ π
0 q̃(t)gn(t) dt, n ∈ Ω. If

{λn}n/∈Ω = {λ̃n}n/∈Ω and ξn = ξ̃n for n ∈ Ω, then q = q̃.

Comment
The case Ω = ∅ is admissible. Under this condition, no additional data
are needed, and we have the uniqueness theorem for Inverse problem 1.
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Theoretical procedure

1. Construct ∆(λ) via the formula ∆(λ) = π
∏∞

k=1
λk−λ
k2 .

2. For n ∈ S and ν = 0,mn − 1, find the numbers

an+ν =
n

ν!

∂νSa(π, λ)

∂λν

∣∣∣∣
λ=µn

, dn+ν = n2 ∆(ν)(µn)

ν!
.

3. For n ∈ S and ν = 1,mn − rn, compute

ξn+mn−ν =
1

an+rn

(
dn+rn+ν−1 −

ν−1∑
η=1

an+rn+ηξn+mn−ν+η

)
.

4. Find q =
∑∞

n=1 ξnfn, where {fn}n≥1 is the basis biorthonormal to
{gn}n≥1 in L2(0, π).
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Uniform stability

Let {λn}n/∈Ω and {ξn}n∈Ω be the data for recovering the BVP L. We
proved that necessary and sufficient conditions for them are as follows:

λn = µn + bnκn, n /∈ Ω,∥∥{κn}n/∈Ω

∥∥ <∞, ∥∥{ξn}n∈Ω

∥∥ <∞, (33)

where ‖ · ‖ is the standard norm in `2 :∥∥{xn}n∈A∥∥ =

√∑
n∈A
|xn|2.

Let {λ̃n}n/∈Ω and {ξ̃n}n∈Ω be the input data corresponding to another
BVP L̃ which differs only in the potential q̃ (see p. 28). Then, we have

λ̃n = µn + bnκ̃n, n /∈ Ω,∥∥{κ̃n}n/∈Ω

∥∥ <∞, ∥∥{ξ̃n}n∈Ω

∥∥ <∞. (34)
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The following theorem gives the uniform stability of Inverse problem 2.

Theorem 3.
Consider arbitrary δ > 0 and two BVP L and L̃. If∥∥{κn}n/∈Ω

∥∥ ≤ δ, ∥∥{κ̃n}n/∈Ω

∥∥ ≤ δ, (35)

then
‖q − q̃‖L2(0,π) ≤ CδΛ + CΞ, (36)

where
Λ :=

∥∥{κn − κ̃n}n/∈Ω

∥∥, Ξ :=
∥∥{ξn − ξ̃n}n∈Ω

∥∥.
The constant Cδ > 0 depends only on p, a, and δ, while C > 0 depends
only on p.

31 / 40



Relation to the case p = 0

Now, we discuss the case p = 0 that was studied in the previous works.
The unperturbed BVP L0 has the form

−y ′′ = λy , y(0) = y(π) = 0.

The eigenvalues of this BVP are

µn = n2, n ≥ 1 (mn = 1, S = N).

We also have

Sa(x , ρ2) =
sin ρ(x − a)

ρ
, bn = an = nSa(π, n2) = (−1)n+1 sin na.

Thus, the necessary and sufficient conditions on the spectrum are

λn = n2 + κn sin na, n ∈ N, {κn}n∈N ∈ `2; (37)

Ω = {n ∈ N : sin na = 0}.
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1) if a/π = j/k , then sin na = 0⇔ n = km, m ∈ N, and

Ω = {km : m ∈ N}.

One spectrum is insufficient for uniqueness, which agrees with [BV,
BBV, BK] (see p. 11). We need additional data {ξkm}m≥1, where

ξn =

∫ π

0
gn(t)q(t) dt, gn(t) = ng(t, n2) = sin nx .

Thus, ξkm =
∫ π
0 sin kmt q(t) dt.

2) if a/π /∈ Q we have sin na 6= 0 for any n ∈ N, and Ω = ∅. In this
case, q is recovered uniquely by the spectrum {λn}n≥1, which agrees
with the result from [W].
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Other directions

Finally, we briefly mention the rest bibliography related to inverse
problems for operators with frozen argument.

A. Other boundary conditions

BH Buterin S., Hu Y.T. Inverse spectral problems for Hill-type
operators with frozen argument, Anal. Math. Phys. (2021).

In [BH], the inverse problem for equation

−y ′′(x) + y(a)q(x) = λy(x)

with periodic or anti-periodic boundary conditions was studied. In this
case, only spectrum is not sufficient for recovering q.
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As far as we know, Nizhnik, Hryniv, and Albeverio first studied an
inverse spectral problem for operators with frozen argument.

Alb Albeverio S., Hryniv R.O., Nizhnik L.P. Inverse spectral problems
for non-local Sturm–Liouville operators, Inverse Problems (2007).

Niz Nizhnik L.P. Inverse eigenvalue problems for nonlocal
Sturm–Liouville operators, Meth. Func. Anal. Top. (2009).

Niz2 Nizhnik L.P., Inverse nonlocal Sturm-Liouville problem, Inverse
Problems (2010).

They considered frozen argument in the end or in the middle of the
segment. The boundary conditions contained an integral member to get
a self-adjoint operator. The approach exploited theory of perturbations
and the self-adjointness. It was found that in some cases, one spectrum
is sufficient for recovering q, while in the other, q is not recovered
uniquely.
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B. Difference equations with frozen argument

Bon Bondarenko N.P. Finite-difference approximation of the inverse
Sturm-Liouville problem with frozen argument, Applied
Mathematics and Computations (2022).

In [Bon], a second-order difference equation with frozen argument was
studied, being a discrete approximation of continuous problem. The
relationship between the eigenvalues of the continuous problem and its
finite-difference approximation was established and used for development
of a numerical algorithm.

C. Equations with frozen argument on time scales

K3 Kuznetsova M. Inverse problem for Sturm–Liouville operators with
frozen argument on closed sets, Itogi Nauki i Tekhniki. Sovr.
Matematika (2022) [in Russian; English translation in
arXiv:2107.05125 [math.SP] (11.07.21)].

In [K3], results were obtained for the Sturm–Liouville equation with
∆-derivatives and frozen argument.
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D. Equations with frozen argument on graphs

Bon2 Bondarenko N.P. Inverse problem for a differential operator on a
star-shaped graph with nonlocal matching condition, Bolet́ın de la
Sociedad Matemática Mexicana (2022).

A Sturm-Liouville operator on a star-shaped graph with non-local
matching conditions at a central vertex was considered. It is adjoint to
Sturm-Liouville operator on the graph with frozen argument.

E. Inverse nodal problems and traces formulae

HBY Hu Y.-T., Bondarenko N.P., Yang Ch.-F., Traces and inverse nodal
problem for Sturm–Liouville operators with frozen argument,
Applied Mathematics Letters (2020).

HHY Hu Y.-T., Huang Zh.-Y., Yang Ch.-F., Traces for Sturm–Liouville
Operators with Frozen Argument on Star Graphs, Results in
Mathematics (2020).
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F. Quadratic differential pencils with frozen argument

HS Hu Y.-T., Sat M., Trace Formulae for Second-Order Differential
Pencils with a Frozen Argument, Mathematics (2023).

HS2 Hu Y.-T., Sat M., Inverse spectral problem for differential pencils
with a frozen argument, J. of Inverse and Ill-Posed Problems (2024).

The spectrum of the following BVP was considered:

−y ′′(x) + ρq1(x)y(a) + q0(x)y(a) = ρ2y , x ∈ (0, 1),

y (α)(0) = y (β)(1) = 0.

An attempt to recover q0 and q1 by the spectrum was made in [HS2].
However, computations concern only a uniqueness theorem and the
rational case a = 1/k . Moreover, the complete proof was not given.
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G. Two or more frozen arguments

ST Shieh Ch.-Ts., Tsai T.-M., Inverse spectral problem of
Sturm-Liouville equation with many frozen arguments,
arXiv:2407.14889v1 [math.SP]

The inverse problem of recovering q by the spectrum of the following
BVP was studied:

−y ′′(x) + q(x)
n∑

s=1

y(as) = λy(x), x ∈ (0, π),

y(0) = y(π) = 0.

Under some assumptions, the authors obtained a uniqueness theorem.
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K5 Kuznetsova, M. On recovering non-local perturbation of
non-selfadjoint Sturm-Liouville operator. Izvestiya of Saratov
University. Mathematics. Mechanics. Informatics (to appear).
https://doi.org/10.48550/arXiv.2307.10075

Thank you for attention!
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