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1. Dissipative operators

Def 1. An operator L on a Hilbert space H is called dissipative if and only if it
is densely defined and

Im⟨u, Lu⟩ ≥ 0, ∀u ∈ Dom (L).

The semigroup

e iLt , t ≥ 0

is contracting.
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2. Metric graphs

Def 2. A metric graph is a pair Γ = (E,V) of edges and vertices

E = {en}Nn=1 finite set of intervals en = [x2n−1, x2n] ⊂ R,
V = {vm}Mm=1 equivalence classes on the set of end points V := {xj}2Nj=1.

Formally
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3.Schrödinger operators on graphs

Schrödinger operator

Lψ = − d2

dx2
ψ + q(x)ψ, q ∈ L∞(Γ),

where q is not assumed to be real-valued and with domain of the form

dom(L) = {ψ ∈ W 2
2 (Γ \ V) : AΨ−B∂Ψ = 0}

for some r × d complex matrices A,B, where d := 2N is the number of end
points and r ∈ N.

Ψ - the vector of limiting values of the functions at the end points
∂Ψ - the vector of limiting values of the oriented derivatives of functions at the
end points
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Part I. Necessary and sufficient conditions

Lemma 3. The Schrödinger operator is dissipative if and only if both

Im q ≥ 0 and Im⟨Ψ, ∂Ψ⟩Cd ≥ 0

for any vector Ψ satisfying the vertex conditions.

⟨ψ, Lψ⟩L2(Γ) =

∫
Γ

(
|ψ′(x)|2 + q(x)|ψ(x)|2

)
dx + ⟨Ψ, ∂Ψ⟩Cd

Im⟨ψ, Lψ⟩L2(Γ) =

∫
Γ

Im q(x)|ψ(x)|2dx + Im
(
⟨Ψ, ∂Ψ⟩Cd

)
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Thm 4. The Schrödinger operator from our class is maximal dissipative if and
only if

Im q ≥ 0, rank (A|B) = N and Im(AB∗) ≥ 0.

NB! Not only maximal operator among Schrödinger operators on Γ, but also
maximal dissipative – no dissipative extension exists.

Important example: delta couplings with Imαm ≥ 0
xi , xj ∈ vm ⇒ ψ(xi ) = ψ(xj) – continuity condition,∑
xi∈vm

∂ψ(xi ) = αmψ(v
m) – delta condition.
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Part II. Completely non-self-adjoint operators

Def 6. An operator L on a Hilbert space H is called completely non-self-
adjoint if any only if there exists no non-trivial reducing subspace V for L such
that L|V is self-adjoint.

Proposition 1. If every point in Σ(A) ∩ R is an eigenvalue, then A possesses
the following Langer decomposition:

A = A|HS
⊕ A|H⊥

S
,

where {
A|HS

is self-adjoint,
A|H⊥

S
is completely non-self-adjoint.

Our goal: characterise real eigenvalues of L and understand their multiplicities.
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Step 1. Dissipative edges
ψ(λ) - any eigenfunction corresponding to a real eigenvalue λ ∈ R

λ∥u∥2 = ⟨u, Lu⟩ = ⟨u,−u′′ + qu⟩ = ∥u′∥2 +
∫
Γ

q(x)|u(x)|2dx + ⟨Ψ, ∂Ψ⟩Cd

⇒
∫
Γ

Im q(x)|u(x)|2dx + Im⟨Ψ, ∂Ψ⟩Cd︸ ︷︷ ︸
≥0

= 0.

⇒
∫
Γ

Im q(x)|u(x)|2dx = 0.

Def 7. An edge ej is dissipative if there exists a subset ∆ of ej of positive
Lebesgue measure |∆| > 0 on which Im q ̸= 0.

Lemma 8. Let the edge ej be dissipative, then let Γj := Γ\ej be the graph
formed by deleting ej . Then

HS(L) = HS(L|Γj
).

Dissipative edges can be ignored determining the self-adjoint part of L.
We get both Dirichlet and Kirchhoff conditions at the vertices where dissipative
edges were attached.
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Step 2. Dissipative vertices

∫
Γ

Im q(x)|u(x)|2dx︸ ︷︷ ︸
≥0

+ Im⟨Ψ, ∂Ψ⟩Cd = 0.

⇒
∫
Γ

Im q(x)|u(x)|2dx =
∑
m

Imαm|ψ(vm)|2 = 0.

Def 9. A vertex vm of Γ is dissipative if the coupling constant αm is not real:
Imαm > 0.

Determining the self-adjoint part of L one should consider only functions equal
to zero at dissipative vertices.
Such eigenfunctions satisfy both Dirichlet and Kirchhoff conditions at dissipative
vertices: 

ψ(vm) = 0 – Dirichlet condition,∑
xi∈vm

∂ψ(xi ) = 0 – Kirchhoff condition.

⇒ Dirichlet-Kirchhoff vertices.
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The first reduction: metric graphs

dissipative edges should be removed – every ψ should be zero there;

Dirichlet-Kirchhoff conditions should be assumed at all dissipative vertices.

Can Dirichlet-Kirchhoff conditions appear at some other vertices?

Yes, consider two dissipative edges meeting at a degree 3 vertex, then ψ satisfies
both Dirichlet and Neumann (=Kirchhoff) condition at the end point belonging
to the third edge.

Def 10. An edge en is redundant if and only if it has an end point which is a
Dirichlet-Kirchhoff-vertex of degree 1.

All redundant edges should be removed – every ψ should be zero there;

Def 11. By deleting dissipative and redundant edges in the original metric
graph Γ, the new graph may again have redundant edges. The graph formed by
repeating this procedure until it stabilises is called the Hermitian core of Γ
(for L), and is denoted by Γ0.

Kurasov (Stockholm) Maximal dissipative operators on graphs August 5, 2024, AMP 10 / 27



The first reduction: metric graphs

dissipative edges should be removed – every ψ should be zero there;

Dirichlet-Kirchhoff conditions should be assumed at all dissipative vertices.

Can Dirichlet-Kirchhoff conditions appear at some other vertices?

Yes, consider two dissipative edges meeting at a degree 3 vertex, then ψ satisfies
both Dirichlet and Neumann (=Kirchhoff) condition at the end point belonging
to the third edge.

Def 12. An edge en is redundant if and only if it has an end point which is a
Dirichlet-Kirchhoff-vertex of degree 1.

All redundant edges should be removed – every ψ should be zero there;

Def 13. By deleting dissipative and redundant edges in the original metric
graph Γ, the new graph may again have redundant edges. The graph formed by
repeating this procedure until it stabilises is called the Hermitian core of Γ
(for L), and is denoted by Γ0.

Kurasov (Stockholm) Maximal dissipative operators on graphs August 5, 2024, AMP 10 / 27



Hermitian core
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Figure: The peeling process applied to a graph Γ with dissipative edges (dotted) and
dissipative vertices (•). Redundant edges which are not dissipative are dashed. The
result is the graph Γ0.

The reduced graph can be seen as a set of smaller metric graphs glued together
at Dirichlet-Kirchhoff vertices ( black bullets).
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Dirichlet and standard operators on the Hermitian
core
Consider three Schrödinger operators determined by the same (Hermitian)
differential expression on the functions satisfying the original vertex conditions
at all not Dirichlet-Kirchhoff-vertices and the following conditions at
Dirichlet-Kirchhoff-vertices

LD(Γ0) – the Dirichlet conditions;

Lst(Γ0) – the standard conditions;

LDK(Γ0) – the Dirichlet-Kirchhoff conditions.

LD(Γ0) and Lst(Γ0) are self-adjoint, LDK(Γ0) - symmetric, their common
restriction.

Thm 14. L is completely non-self-adjoint if and only if there are no eigenvalues
λ ∈ Σ(LD(Γ0)) ∩ Σ(Lst(Γ0)) such that λ-eigenspaces of LD(Γ0) and Lst(Γ0)
have a non-trivial intersection. The following are therefore equivalent:

(a) L is not completely non-self-adjoint,

(b) there exists a nontrivial eigenfunction of LDK(Γ0),

(c) LD(Γ0) and Lst(Γ0) have a common eigenfunction.
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Hypergraphs
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Figure: Hermitian core with Dirichlet-Kirchhoff vertices (•).

The reduced graph can be seen as a set of smaller metric graphs glued together
at Dirichlet-Kirchhoff vertices.

⇒ The language of hypergraphs can be used.

NB! We need metric analogs of hypergraphs.
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Hypergraphs (metric)
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Figure: A hypergraph, with contact points (•), hyperedges (light grey regions), and
hypervertices (dark grey regions) labelled.

Def 15. Let V be a set of contact points. A hypergraph H = (E,V) is a
pair, where

E = {en}Nn=1, is an (hyperedge) partition of V into non-intersecting subsets
called hyperedges,
V = {vm}Mm=1, is a (hypervertex) partition of V into some equivalence
classes called hypervertices.
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Hypercycles

Def 16. Assume that vl , l = 1, 2, . . . , n is a sequence of hypervertices and
ej , l = 1, 2, . . . , n is a sequence of hyperedges in H such that

every vl belongs to two consecutive hyperedges el and el+1;

every hyperedge ej contains vj−1 and vj ,

where we use cyclic notation n+ 1 = 1. Then the hypercycle is the hypergraph
formed by ej , l = 1, 2, . . . , n with the connections determined only by vl .

NB! Hypercycle does not need to be a subhypergraph – not all connections
between the hyperdeges present in the original hypergraph are preserved.

⊕

⊕

⊕⊕

⊗

⊕

⊕

s

Figure: A hyper-4-cycle s.
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Hypertrees
Hypertrees – hypergraphs having no hypercycles.

Proposition 2. Let H = (E,V) be hyperforest. Then∑
deg(vm)≥2

(deg(vm)− 2) +
∑

val(en)≥2

(val(en)− 2) = T − 2β0(H).

where
β0(H) – number of connected components of H,
T – number of terminals,
deg(vm) = |vm| - number of points in the hypervertex;
val(en) – number of connections to the rest of the graph.

• • • •

• •
•

•
••

• •
•

••
•

•

Branching is due to higher

degree vertices and edges

3 + 1 = 6− 2× 1

21 3

2

1

2

2

1

1

2

2

3

3

3

22

1

1

Figure: A hypergraph, with contact points (•), hyperedges (light grey regions), and
hypervertices (dark grey regions) labelled.
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In particular we have:

2β0(H) ≤
∑
en∈E

(2− valH(en)) ≤ T .

The lower bound is attained if and only if every hypervertex has
hyperdegree at most 2.

The upper bound is attained if and only if every hyperedge has valency at
most 2.
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Hyperclusters

Def 17. A hypercluster σj of a hypergraph H is a maximal subhypergraph
which cannot be divided into two subhypergraphs sharing only one common
hypervertex.

⊙ ⊗

⊕

⊕⊕

⊘

⊙ ⊙

⊕

⊕

⊙

⊕

⊕

⊙

σ ⊂ H

Every hypercycle determines a unique hypercluster (to which it belongs), while
hypercluster may contain several hypercycles.

Kurasov (Stockholm) Maximal dissipative operators on graphs August 5, 2024, AMP 18 / 27



Factorisation of metric graphs
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Figure: Isolation of a factor γ1 from Γ: distinguished vertices each denoted by •; all
other vertices are denoted by ◦. The distinguished vertices are totally dissolved. Given
a resulting connected component γ̂1, its endpoints which were identified in Γ are then
re-identified to form the factor γ1 of Γ.
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•

• •

Γ
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The second reduction: Hypercore

Fix λ ∈ R.
λ is not an eigenvalue of LD(en) ⇒ the factor is redundant.
en has a contact point belonging to degree one hypervertex

no eigenfunction on en satisfies Kirchhoff condition
⇒ the factor is redundant

otherwise consider only eigenfunctions satisfying Dir and Kirch conditions.

Def 18. Deleting degree one hypervertices, redundant hyperedges and
redundant connections in the original hypergraph H = Γ0, the new graph may
again have degree one hypervertices and redundant hyperedges and contacts.
The hypergraph formed by repeating this procedure until it stabilises is called
the Hermitian hypercore of H (for L), and is denoted by H0 = H0(λ).

Degree one hypervertices are removed, but only functions satisfying both
Dirichlet and Kirchhoff conditions (at the removed hypervertices) are allowed.
OUR ANALYSIS REDUCES TO THE HERMITIAN HYPERPCORE!!
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Hypertrees

Thm 19. K – any subhypergraph of the Hermitian hypercore H0, Statement:

(S) λ is a common eigenvalue of the operators LD∂K(γj) on the hyperedges of K

λ ∈ Σ(LD∂K(γj)), γj ∈ K.

Then we have the following:

(a) If L is not completely non-self-adjoint, then there exists a non-trivial
connected subhypergraph K of H0 such that (S) holds.

(b) If there exists a non-trivial sub-hypergraph K which is a also a hypertree,
such that (S) holds, then L is not completely non-self-adjoint.

(c) If H0 is a hypertree, then L is not completely non-self-adjoint iff there
exists K such that (S) holds.

On hypertress eigenfunctions on the factors can always be connected together
leading to an eigenfunction.
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Hypercycles

Lemma 20.
K – subhypergraph which is a hypercycle.
ψj - eigenfunctions on the factors enumerated cyclically.
If

n∏
j=1

∂ψj+1(vj) = (−1)n
n∏

j=1

∂ψj(vj),

holds ⇒ ∃ eigenfunction supported on K.

Thm 21. All hypervertices in the Hermitian hypercore H0 have degree at most
two. Statements:

(S) λ is a common eigenvalue of the operators LD∂K(γj) on the hyperedges

(M) the multiplicity of the eigenvalue λ on each factor is 1;

(B) the eigenfunctions are balanced along any hypercycle in K.

Then:

(a) L is not completely non-self-adjoint ⇔ ∃ subhypergraph K of H0 and a set
of eigenfunctions ψj satisfying (S) and (B).

(b) If (M) holds for all factors in H0, ⇒ L is not completely non-self-adjoint if
and only if there exists K such that (S) and (B) hold.
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General hypertrees

Def 22. A multipath in a hypertree H is a subhypertree connecting two or
more terminals in H such that every hypervertex has hyperdegree 2.

Multipath dimension – the number of independent multipaths.

Thm 23. Hermitian hypercore H0(λ) is a subhyperforest. Then the multiplicity
is

m(λ) = −β0(H0) +
∑
γj

(1 +mγj − valH0(γj)),

where

mγj – multiplicity of λ on the factors;

β0(H0) is the number of connected components of H0.

Every subhypertree gives an eigenfunction!
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General hypergraphs

Thm 24. The multiplicity m(λ) satisfies

m(λ) ≤ 2β1(H0)− β0(H0) +
∑
γj∈H0

(
1 +mγj − valH0(γj)

)
where

mγj – multiplicity of λ on the factors;

β0(H0) – number of connected components of H0,

β1(H0) – number of independent hypercycles in H0.
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Examples

1 Cycle formed by two edges:

0
ℓ2

ℓ1
0

Real eigenvalues iff the edge lengths are rationally dependent.

2 Watermellon

Real eigenvalues if and only if there exists a pair of edge lengths which is
rationally dependent.
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Examples

1

ℓ1

ℓ2

ℓ3

ℓ4

ℓ5

Figure: The graph Γ and the corresponding hypergraph.

If all edges have equal length ℓ, then the real eigenvalues are
(nπ/ℓ)2, n ≥ 1 with multiplicity two.

Our general estimate:

m(λ) ≤ 2β1(H0)︸ ︷︷ ︸
=1

−β0(H0)︸ ︷︷ ︸
=1

+
∑
γj∈H0

(
1 +mγj − valH0(γj)

)
︸ ︷︷ ︸

0+1

= 2

The estimate applied to the metric graph:

m(λ) ≤ 2β1(H0)︸ ︷︷ ︸
=2

−β0(H0)︸ ︷︷ ︸
=1

+
∑
γj∈H0

(
1 +mγj − valH0(γj)

)
︸ ︷︷ ︸

0+0+0+0+0

= 3
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Thank you for your attention!
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