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Consider the following system of differential equations:
y' = (pB+z A+ q())y, x>0 (1)

with the spectral parameter p and n X n (n > 2) matrices A, B,q(z),z € (0,00), where A, B
are constant.

Condition 1. B = diag(b1, ..., bn), the entries by, . . ., by are nonzero distinct complex numbers
n
such that > b; = 0. Any three of b1,..., b, are noncollinear.
i=1

Condition 2. The matrix A is off-diagonal. Its eigenvalues {1;}7_, are distinct and such that
i — pi € Z for j # k, moreover, Rep1 < Repa < --- < Repn, Repy # 0.

Condition 3. The matrix function ¢(z) is off-diagonal, g;x(-) € Xp := L1(0,00) N Lp(0, 00),
p> 2.

Unperturbed system:
y'=(pB+a Ay (2)



Related scalar differential operator:

n—2

tyi=y™ + 3 (o) + x:Iik )y® (3)

k=0

Related topics:

o Radial equations arising from PDEs and systems of PDEs having rotational symmetry

o Weighted ODEs of the form ¢y = Ar(x)y or £1y = Al2y having turning point

e Singular solutions for integrable PDEs, obtained, for instance via Backlund transform
Inverse spectral problems for (1) and (3) with n = 2 (since 1953): Stashevskaya, Krein, Faddeev,
Marchenko, ..., Albeverio, Hryniv, Kostenko, Teschl, Bondarenko, ....
Inverse spectral problems for (1) and (3) with n > 2 (since 1992): Yurko, Kudishin, Fedoseev.

Applicability conditions of the V.A. Yurko approach. The functions g;;(-) are absolutely
continuous, integrable on the semi-axis (0, c0) and such that:

1
/0 |z =g ()| do < oo



Let ¥ be the following union of lines through the origin in C:

S= |J {p:Re(pb;) =Re(pby)}.
(k,3): 57k

Then C\ X can be presented as a union of the sectors Sy, v =1, N.

Eufl

Zu Sl = SN+1

El/Jrl
YN-1
Consider some arbitrary sector S,. Let Ry1,..., R, be the ordering of the numbers b1,...,by,

such that Re(pR1) < Re(pR2) -+ < Re(pRy) for any p € S,.. We denote by f the permutation
matrix such that (R1,...,Rn) = (b1,...,bn)f.



|
Definition of the Weyl-type solutions

Let k and p € S, are (arbitrary) fixed. Function y(z),z € (0,00) is called k-th Weyl-type
solution if it satisfies (1) and the following asymptotics hold:

y(z) = O (@"*),z = 0, y(z) = exp(pRyz)(fk + o(1)),z = oo.



Solutions of the unperturbed system

We start with the unperturbed system for p = 1:
y' —2" Ay = By (4)

and (complex) z € S,. The following fundamental matrices for system (4) are known to exist:

o c(z) = (c1(x),...,cn(x)), where
ci(z) =tk g (),

det c(z) =1 and all éx(-) are entire functions;

o e(z) = (e1(x),...,en(x)), where

e (z) = e®Fr (fe + 7 e (@), me(z) = O(1),z = oo,z € Sy.



Weyl-type solutions for the unperturbed system

Condition I. For all v = 1, N, k = 1, n the numbers
Ag :=det(e1(z),...,ex—1(z), ck(x),...,cn(x))
are not equal to 0.

Under Condition I unperturbed system (4) has the (unique) fundamental matrix ¢o(z), z € Su
such that

Yo,k (t) = ek (fi, + 0(1)),t — 00,z € Sy, o k(x) = O(x"*),z — 0.

For unperturbed system (2) with p € Sy, * > 0 we introduce the following fundamental
matrices:

o C(z, p) == c(px);
o E(z, p) == e(pz);
o Vo(z,p) = vo(pz).



|
Basic idea for general case (R. Beals, P. Deift, C. Tomei, 1988)

Suppose the Weyl-type solutions {¥y(x, p)}7_, are already constructed. Then:

o for any multi-index o = (a1, ..., am) the tensor-valued function
Val(z,p) :=TVqy(x,p) A--- AN VUq,, (x,p) satisfies some auxiliary system of ODEs;

o the tensors W1, U1 A Wo, U1 AWy A W3, ... have a minimal growth as x — oo;

o the tensors Wy, Up_1 AVy, Uy o AV, _1 AV¥,, ... have a minimal growth as x — 0.



Notations

For given n X n matrix M M (™) denote an operator acting in A”*C" so that for any vectors
U1, ..., Un the following identity holds:

m
MU (uy Aug A+ Ai) =Y ur Aug A Aug AMuj Aujpn A Atim.
Jj=1

Denote by Ay, the set of all ordered multi-indices @ = (a1,...,am), a1 < az < -+ < Qm,
aj € {1,2,...,n}. For a set of vectors u1,. .., u, from C” and a multi-index o € A, we define

Ue = Uay N N Uy, -

Let a1,...,an be a numerical sequence. For a € A,,, we define
— Q. )
Aq = E aj, a ._Haj.
JjEa JjEa



Notations

For k € 1,n we denote

n k n
Do= ap Tro=3 ay, @ = [[ay, T = [ a
j Jj=1 j=k

For a multi-index « the symbol o’ denotes the ordered multi-index that complements a to
(1,2,...,n). We note that Assumption 1 implies, in particular, that Z wr = Z Ry =0 and

therefore for any multi-index o one has R, = —Rq and p, = —pia. For h e /\"(Cn we define
|h| as a constant in the following representation:

h=|hle1 Aea A+ Aen.



Notations

Introduce the function:
Wo(8) == (1—[EDE+ [¢%, [¢1 <1, Wo(&) := (Wo (™) 1€l > 1,

Wi (§) := Wo (§#%) exp(Ri&), €] <1, Wi(§) := exp(Rgf), €] > 1,

k=1n.
We denote by W (&) the following diagonal matrix:

W (§) := diag(W1(€), ..., Wn(£))



Fundamental tensors

We consider the following Volterra integral equations:

V(@) =T 0) + [ Guora(antn) (6" OO (0) dr (1)
0
Y(@) = Fep) — [ Gulatop) (4 Y (0)) dt %)

where
T}?(%F’) = Ck(z7p) JARRRRA Cn(z7p)7

Fl(x,p) := E1(z,p) A+ A Ex(z,p) = Yo,1(z,p) A+ AWq i (, p)

and Gm (z,t, p) denote an operator acting in A" C" as follows:

Gm(fb,t, p)f = Z Xa |f A \I}O,a’ (tvp)| \Iloya(l',p), Xa = |fOé A foz'l
aEAp,



Fundamental tensors

Theorem 1. For any p € S, equations (4), (5) have the unique solutions Tx(q,z,p) and
Fy(q, z, p) respectively. The following representations hold:

Ty(q, 2, p) = T2 (x, p) + W* (p2) Tk (g, 2, p),

— ~
Fi(q,x, p) = FY(, p) + W* (px) Fi(q, , p),
Ty, Fiy € C(Xp, BC([0,00), Co(S,))) and for any ray [ = {p = zt,t € [0,00)}, z € S, \ {0} the
restrictions Tk‘l , ﬁk‘l € C(X,, BC([0, 00), H(1))).

Here the symbol X}, denotes the Banach space of all off-diagonal matrices with entries from
Xp, H(l) = C()(l) N Lg(l).



|
Weyl-type solutions

Define Ag(q, p) := |Fr—1(q,z, p) A Ti(q, z, p)|-

Theorem 2. For any p € S, such that Ag(p) # 0 there exists and is unique the Weyl-type
solution Wy (z, p). For each fixed z > 0 ¥y is a unique vector with the properties:

F_1 ANV, = Fy, Ve NT, =0.

Theorem 3. The following relation holds:

(To(z,p)) "' U(g,2,p) = W (px)B(q, , p)W (pa),
where
3k +djr(q,z,p)
1+ di(q,z,p)

djk,dy € C(Xp, BO([0,00),Co(Sy))) and for any ray | = {p = zt,t € [0,00)}, z € S, \ {0} the
restrictions djx|, , dil; belong to C(X,, BO([0,00), H(1))).

Bjk(qvxv p) =



|
Weyl-type solutions

n
For a set L C C we define GF(L) as the class of functions ¢(-) € X such that k]:[1 Ag(p) #0
for all p € L. a

Theorem 4. Suppose p > 2. Then the following representation holds:
Vi (g, 7, p) = Wok(x, p) + Wi (px) ¥y (q, 2, p),

where Uy, € C(GR(1),C([0,T],H(1))) for any ray | = {p = zt,t € [0,00)}, z € S, \ {0} and
any segment [0,T],0 < T < oo.



Scattering data

For a function f = f(p), p € C\ £ and po € ¥’ the expressions f¥(po) will denote the limits
(if exist): fi(po) = 1ir£1_0f(po =+ ipoe). In some cases, for the sake of brevity, we write f(po)
E—r

instead of f~(po).

Suppose q() € Ll(o’ OO); U= \If(l',p) = (\Ijk(qﬂ x,p))TkL:l? T e (0700)7 pecC \ S lpetis
such that Ag(p) # 0, A:(p) # 0, k = T, n then all the limits U® (x, p) exist and there exists
the matrix v = v(p) such that:

W (2,p) = U (2, p)v(p) ()



Properties of scattering data

For p € ¥’ define II(p) as the permutation matrix such that

(R (p),---  RE(p) = (RY (), -, Ry (p))IL(p),

or, equivalently, Rt (p) = I (p) R~ (p)II(p). Clear that TI(p) is block diagonal and constant
on each ray X,. In what follows we call a matrix function II(p), p € ¥/ II-diagonal if it is block
diagonal and its block structure is the same as the block structure of II(p).

Define I_ := {k : Re(pRyr) = Re(pRi+1)} (note that for & € I_ one has: Re(pRi_1) <
Re(pRy,) if k > 1).

Theorem 5. For each p € ¥/ v(p) is low triangular and Il-diagonal. Moreover, for each
k € I_ one has:

O vpt1k(p) =15

Q vk (P)Vk41,k+1(p) = —1.

Theorem 6. Suppose that for all v = 1, N the following condition is satisfied:

n

lim Ak(p) # 0.
p—0,pES, kI;II

Then for all v = 1, N there exist the limits lim _ v(p), which do not depend on the
p—0,pEX,

potential q(-).



Properties of scattering data

Definition We say that q(-) € X}, belongs to G5(3) if

n
[125@p #0
k=1
forall pe X.
Definition 7(X) is the space of functions ¢ € La(X) such that:
© for any v =1, N the restriction ¢(p)|, ¢y, is continuous;

there exists the limits li li :
(2] x i ©(p), A »(p);

(a) lim p(p) =0.

p—>00,pEX,
For ¢ € H(E) we set [[o]| := [l L, z) + [1€llog(s)-
Define Ho(X) :={p(:) e H(X): lim _ ¢(p) =0,vr =1, N.
p—0,pEX,

Theorem 7. Suppose p > 2. Then v(-,-) —vo(-) € C(GE(Z), Ho(X)). Here and below vo(p) :=
v(0, p).



Formulation of Inverse Scattering Problem

Definition We say that q(-) € X, belongs to G} if for any v =1, N q(-) € G} (S.).
Problem 1. Given v(q, p), p € &' for some q(-) € GE, recover q(-).

In what follows we call the matrix function v(g, p) the scattering data.



Solution of Problem 1. Main equation.

The Cauchy operators:

N
.72 /C f(¢), peC\%;

CEf(p) == (CHE(p).

Fix an arbitrary ¢(-) € G} and set P(z, p) = P(q,x, p), where P(q,z, p) := ¥(q, z, p) (¥o(x, o)t
(spectral mapping matriz).

Theorem 8. Define 15(907 p) = Pt (z,p) — P~ (z,p). For each fired x > 0 the following
assertions are true:

o 15(:1: -) is the solution of the equation A(xz)p = V( 3 unique in La(X), where

V(z,p):=V(z,p)—1I, V(z,p) := Uo(, p)v(p)vo (p) ¥, Yz, p) and linear operator A(z)
act in La(X) by the formula:

A(z)p(p) == (CTe) (p) — (C™¢) (P)V(x, p);

@ the operator A(x) is invertible.



Solution of Problem 1. Reconstruction formula for smooth potentials.

Theorem 9. Let q(-) € G be absolutely continuous function compactly supported in (0, 00).
Then the following reconstruction formula is true:

1@ = 5 [ [B.P.0)] do,

by
where the integral in the right hand side is considered as the following limit:

L [B, ﬁ(w, p)] dp := lim L / [B, P(m,p)] dp.

211 r—oo0 274
Zn{lpl<r}

Here and below [+, -] denotes the matrix commutator: [My, Ma] := M1 Mo — MaMj.



Solution of Problem 1. Reconstruction formula.

By L;’(E) we denote the space II-upper triangular matrix functions with the elements from
Ly (%), HT (Z) = Ho(2) N LT (X). By HLI(Z) we denote the space of low triangular II -
diagonal matrix functions with the elements from Ho(X).

Lemma 1. Define the bilinear operator:
1 B .
B0, 9)(0) = 5= | B. [ dp (€ (e )) () (w,.p) |
by

where
V(u,z, p) := To(, p)u(p) ¥y ' (z, p).
Then:
0 & :HI(Z) x C([0,00), L2(E)) — C[0,00) is continuous;
@ for any u € HI(E), ¢ € C([0,00), L2(E)) as r — oo ®r(u, p) — ®(u, ), where:

@ (Wp(e) = 5 [ dp8 (1l =) [B. (C7 (e, ) ()7 (., )]
P



Solution of Problem 1. Reconstruction formula.

Lemma 2. Define the family of linear operators:

Fof(a) i= 5 [ do0™ (1ol = 1) [B. Vol 1 ()95 @100
=

r > 0. Then:
Q foreachr >0F,. €L (HEI(E),LQ’ZOC(O, oo]);

@ there exists a strong limit
F=s— lim F, €L (HOH(E), L2.100(0, oo]) .
r—00
Theorem 10. Let v(p) = v(q, p) be the scattering data for some q(-) € G¥, d(p) = v(p)val(p)f

I, T:’(:r,p) = P*t(q,z,p) — P~ (q,z,p). Then the reconstruction formula holds:

q=®(0,P)+ Fo.



Characterization of scattering data

We say that a matrix function v = v(p), p € ¥ belongs to the class V if:
@ v()) —vo() € Hy (B);
@ each nontrivial diagonal block of v(p) located in the rows with indices k and k + 1,
where k € I_, and has the form:
Vkk 0
1 vggik+1 )

Note that if v(-) is the scattering data for some g(-) € G§ then v(:) € V.

where VekVk4+1,k+1 = —1.

For two functions v1(-) € V and v1(-) € V we set dist(vi,v2) := ||[v1 — UQHHH(E).
0



Characterization of scattering data

For a matrix function v = v(p), p € % define:
(p) :=v(p)vy ' (p) = I,
V = V(v,x,p) = Yo(x, p)v(p)vy " (p)(Yo(x, )",
V(v,2,p) = V(v,z,p) — I = Wo(x, p)i(p)(Yo(z,p)) "
For arbitrary v € V, z € [0,00) define the operators:
A(v,z)f(p) == CT f(p) = (CT NPV (v,2,p) = f(p) = (CT )V (v,2,p).

Define also: R
p(v,m, ) = (A(v7m))7lv(v$z7 ')7

q(v,") == ®(0(), p(v,-,-)) + Fo(").



Characterization of scattering data. Main theorem.

Theorem 11. For given v(-) € V to be the scattering data for some q(-) € Gg 1t 45 necessary
and sufficient that:
Q for each fized x € [0,00) the operator A(v,x) is invertible;
@ for each k = 1,n there exists a function S (p), p € C\ 3, which is analytic in C\ X and
such that:
o for each v =1, N the function p*k &, (p) admits a continuous extension onto S, ;
o pMkdi(p) Z0 forallp€S,, v=1,N;
o for p € X' the following conjugation condition satisfied: 5~ (p) = vkk(p)ézf(p);
o for p — oo, p € C\ = the asymptotics 6(p) = do(p)(I + o(1)) holds, moreover,
5i(')(60i(~))71 — I € La(X). Here 6o(p) is the diagonal matriz such that
Yo(z, p)do(p) = (h+o(1))z" asxz — 0, h = (h1,...,bH,).

9 q(v,-) € Xp.



Sufficient conditions

Denote Vg := (vo + Cg5 (X)) N'V.

The following theorem shows that in the case v(-) € Voo condition 3 is satisfied if condition 1
is satisfied.

Theorem 12. Let v(-) € Vg is such that condition 1 of the theorem above is satisfied. Then
q(v,z) is continuous in x € [0,00) and the estimate q(v,z) = O(x~™) as © — oo, is holds
with arbitrary m > 0.

The theorem above allows to obtain sufficient conditions for the Problem 1 solvability.

Corollary There exists g > 0 such that any v(-) € Voo: ||[v—vollr. () < €0 is the scattering
data for some q(-) € G¥.



