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Motivation, Topics Discussed

Motivation and Topics Discussed:

Motivation:

• Index Theory for Non-Fredholm Operators, Witten Index.

• Spectral Theory for Schrödinger and Dirac-type Operators in Rn, n ⩾ 2.

• Scattering Theory, Spectral Shift Function.

Topics Discussed:

• Threshold Behavior (i.e., Zero-Energy Resonances and Eigenvalues).

• A Limiting Absorption Principle.

• Absolutely Continuous Spectrum.

• Spectral Shift Function (SSF) and its Continuity Properties.
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Motivation, Topics Discussed

A bit of Motivation: The Fredholm Index

Definition (Fredholm operators).

Let T be a closed and densely defined operator in H. Then T is Fredholm if
ran(T ) is closed in H and dim(ker(T )) + dim(ker(T ∗)) < ∞.

If T is Fredholm, its index (denoted by ind(T )), is defined as

ind(T ) = dim(ker(T ))− dim(ker(T ∗))

= dim(ker(T ∗T ))− dim(ker(TT ∗)).

Some Facts. Suppose T is a closed and densely defined operator in H. Then,

(i) T is Fredholm if and only if T ∗ is and ind(T ∗) = − ind(T ).

(ii) T is Fredholm if and only if there exists ε > 0 such that inf(σess(T
∗T )) ⩾ ε

and inf(σess(TT
∗)) ⩾ ε. (Note. The “and” is crucial here!)
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Motivation, Topics Discussed

A bit of Motivation: The Fredholm Index

Some Facts (contd.). Suppose T is a closed and densely defined operator in H.
Then,

(iii) T Fredholm, S relatively compact w.r.t. T (e.g., S(T − z0 IH)−1 compact in
H for some z0 ∈ ρ(T )), then T + S is Fredholm and ind(T + S) = ind(T ).

−→ Stability of the Fredholm index w.r.t. additive relatively compact
perturbations. Think, “topological invariance” ......... one of the exciting
properties of the Fredholm index! Roughly speaking, local changes in the
coefficients of a Fredholm PDE operator will not change its index.

(iv) S and T Fredholm, such that ST is densely defined, then ST is Fredholm
and ind(ST ) = ind(S) + ind(T ).
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Motivation, Topics Discussed

More Motivation: The Witten Index and SSF

Perhaps, the best way to formally introduce the real-valued Krein–Lifshitz
spectral shift function (SSF) on R, ξ( · ;H,H0), for a pair of self-adjoint
operators (H,H0) in H, is to show what it can do: It computes traces for
“appropriate” functions f as follows:

trH(f (H)− f (H0)) =

∫
R
f ′(λ) ξ(λ;H,H0) dλ,

E.g., if H0, H are bounded from below by some c IH and
[
e−tH − e−tH0

]
is trace

class in H for some t0 > 0, then

trH
(
e−tH − e−tH0

)
= −t

∫
[c,∞)

e−tλξ(λ;H,H0) dλ, t > 0.

Similarly, if resolvent differences are trace class.

Definition of ξ(λ;H,H0): E.g., if dom(H) = dom(H0) and
(H − H0)(H0 − z0IH)−1 is trace class in H. Then, for a.e. λ ∈ R,

ξ(λ;H,H0) =
1

π
lim
ε↓0

Im
(
ln
(
detH

(
IH + (H − H0)(H0 − (λ+ iε)IH)−1

)))
.

This works well for ODEs, but for PDEs we need to use heavier machinery.
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Motivation, Topics Discussed

Motivation: The Witten Index and SSF (contd.)

Here detH(IH + T ) denotes the Fredholm determinant of a trace class
operator T in H.

Next, let T be a closed, linear, densely defined operator in H and suppose that for
some t0 > 0 (and hence for all t > t0),

[
e−t0T

∗T − e−t0TT
∗]

is trace class. Then
the (semigroup regularized) Witten index Ws(T ) of T is defined by

Ws(T ) = lim
t→∞

trH
(
e−tT∗T − e−tTT∗)

,

whenever this limit exists. This represents an interesting extension of the notion
of the Fredholm index to some classes of non-Fredholm operators.

If ξ( · ;TT ∗,T ∗T ) is continuous from above at λ = 0, then Ws(T ) exists and
Ws(T ) = ξ(0+;TT

∗,T ∗T ).

Normalization: If H0, H are bounded from below by some c IH, then one
typically normalizes ξ( · ;H,H0) such that

ξ(λ;H,H0) = 0, λ < c .

A more sophisticated approach shows that it is sufficient that 0 is a right and left
Lebesgue point of ξ( · ;TT ∗,T ∗T ).
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Motivation, Topics Discussed

Motivation: The Witten Index and SSF (contd.)

Theorem A (Consistency in the case of Fredholm operators).

Assume that for some t0 > 0,
[
e−t0T

∗T − e−t0TT
∗]

is trace class and suppose
that T is Fredholm. Then Ws(T ) exists and

ind(T ) = Ws(T ) = ξ(0+;TT
∗,T ∗T ).

Remark. Generally, the Witten index, Ws(T ) is not integer-valued. E.g., in a
concrete 2d magnetic field system Ws(T ) has the meaning of magnetic flux
F ∈ R, an arbitrary real number! Still, one can prove a stability result:

F.G., B. Simon, Topological invariance of the Witten index, J. Funct. Anal. 79,
91–102 (1988),

showed that Ws(T ) has stability properties w.r.t. additive perturbations
similar to the Fredholm index, replacing the relative compactness assumption on
the perturbation by “appropriate” relative trace class conditions.

−→ Stability of the Witten index w.r.t. additive relatively trace class
perturbations. Think again, “topological invariance” ......... i.e., local changes
of coefficients in PDE operators will not affect the Witten index!
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Motivation, Topics Discussed

Motivation: The Witten Index and SSF (contd.)
The actual Witten index we’re interested in is still a bit removed from this setup.
However, we can reduce it’s value to that of [ξ(0+;H,H0) + ξ(0−;H,H0)]/2,
where H0,H are appropriate free and interacting massless Dirac operators:

H0 = α · (−i∇), H = H0 + V

in [L2(Rn)]N , n ∈ N, n ⩾ 2, with α, V being N ×N-matrices, N = 2⌊(n+1)/2⌋, and
the matrix-valued potential V suitably decaying at infinity (more details soon).
The principal aim then is to express the (resolvent or semigroup) regularized
Witten index of the following non-Fredholm operator DA in L2

(
R; [L2(Rn)]N

)
(a

model operator studied by Atiyah–Patodi–Singer, Robbin–Salamon, etc., given
by (with t ∈ R)

DA =
d

dt
+ A, dom(DA) = W 1,2

(
R; [L2(Rn)]N

)
∩ dom(A−),

in terms of the spectral shift function ξ(λ;H,H0) at λ = 0±, where

A = A− + B ≡
∫ ⊕

R
dt A− +

∫ ⊕

R
dt B(t), dom(A) = dom(A−).
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Motivation, Topics Discussed

Motivation: The Witten Index and SSF (contd.)

Here A, A−, A+, B, and B+ in L2
(
R; [L2(Rn)]N

)
are generated with the help of

the Dirac-type operators H,H0 and potential matrices V as direct integral
operators as follows:

A(t) = A− + B(t), t ∈ R, A− ≡ H0, A+ = A− + B+ ≡ H,

B(t) = b(t)B+, t ∈ R, B+ = V ,

in [L2(Rn)]N , assuming b( · ) is a smooth step function satisfying

b(k) ∈ C∞(R) ∩ L∞(R; dt), k ∈ N0, b′ ∈ L1(R; dt),
lim
t→∞

b(t) = 1, lim
t→−∞

b(t) = 0.

In particular, A± are the asymptotes of the family A(t), t ∈ R, as t → ±∞ in the
norm resolvent sense.

In this context,

L2(R;H) =

∫ ⊕

R
dtH and T =

∫ ⊕

R
dt T (t)

represent direct integrals of Hilbert spaces and operators.
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Motivation, Topics Discussed

Motivation: The Witten Index and SSF (contd.)

Introducing the nonnegative, self-adjoint operators (the analog of T ∗T and TT ∗)

H1 = D∗
ADA, H2 = DAD∗

A

in L2
(
R; [L2(Rn)]N

)
, the principal aims is to express the (semigroup) regularized

Witten index Ws(DA) of DA in terms of spectral shift functions and prove the
formula

Ws(DA) = ξL(0+;H2,H1) = [ξ(0+;H,H0) + ξ(0−;H,H0)]/2.

Here the notation ξL(0+;H2,H1) indicates that 0 is a right Lebesgue point for
ξ( · ;H2,H1).

This explains our interest in ξ(λ;H,H0), λ ∈ R.

Next we discuss the framework that eventually permits the realization of these
ideas to the concrete case of the multi-dimensional, massless Dirac-type
operators H,H0:
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Background

(Massless) Dirac-Type Operators: Background
Hypotheses. Let n ∈ N, n ⩾ 2.

(i) Set N = 2⌊(n+1)/2⌋ and let αj , 1 ⩽ j ⩽ n, αn+1 := β, denote n + 1
anti-commuting Hermitian (Clifford) N × N matrices with squares equal to IN ,
that is,

α∗
j = αj , αjαk +αkαj = 2δj,k IN , 1 ⩽ j , k ⩽ n+1, IN the unit matrix in CN .

(ii) Introduce in [L2(Rn)]N the free massless Dirac operator (with ∂j = ∂/∂xj)

H0 = α · (−i∇) =
n∑

j=1

αj(−i∂j), dom(H0) = [W 1,2(Rn)]N .

(iii) Next, consider the self-adjoint matrix-valued potential V = {Vℓ,ℓ′}1⩽ℓ,ℓ′⩽N

satisfying for some fixed ρ ∈ (1,∞), C ∈ (0,∞),

V ∈ [L∞(Rn)]N×N , |Vℓ,ℓ′(x)| ⩽ C [1 + |x |]−ρ for a.e. x ∈ Rn, 1 ⩽ ℓ, ℓ′ ⩽ N.

Under these assumptions on V , the interacting massless Dirac operator H in
[L2(Rn)]N is defined via

H = H0 + V , dom(H) = dom(H0) = [W 1,2(Rn)]N .

Note. These hypotheses are general enough to permit electromagnetic fields!
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Background

(Massless) Dirac-Type Operators: Some Properties

Notation: [L2(Rn)]N = L2(Rn;CN), [W 1,2(Rn)]N = W 1,2(Rn;CN), etc.
Then H0 and H are self-adjoint in [L2(Rn)]N , with essential spectrum given by

σess(H) = σess(H0) = σ(H0) = R,

since V is relatively compact w.r.t. H0. In addition,

σac(H0) = R, σp(H0) = σsc(H0) = ∅.

Compare with the massive free Dirac operator in [L2(Rn)]N , with β = αn+1,

H0(m) = H0 +m β, dom(H0(m)) = [W 1,2(Rn)]N , mass m > 0,

and the corresponding interacting massive Dirac operator in [L2(Rn)]N given by

H(m) = H0(m) + V = H0 +m β + V , dom(H(m)) = [W 1,2(Rn)]N , m > 0,

σess(H(m)) = σess(H0(m)) = σ(H0(m)) = (−∞,−m] ∪ [m,∞), m > 0,

σac(H0(m)) = (−∞,−m] ∪ [m,∞), σp(H0(m)) = σsc(H0(m)) = ∅, m > 0.

One observes the identity

H0(m)2 = IN
[
−∆+m2I[L2(Rn)]N

]
, dom

(
H0(m)2

)
= [W 2,2(Rn)]N , m ⩾ 0.
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Background

(Massless) Dirac-Type Operators: Green’s Matrix

From now on we put m = 0 and almost exclusively focus on the massless case.

The Green’s function (matrix) of H0: Assuming z ∈ C+, x , y ∈ Rn, x ̸= y ,
n ∈ N, n ⩾ 2, then

G0(z ; x , y) := (H0 − zI )−1(x , y)

= i4−1(2π)(2−n)/2|x − y |2−nz [z |x − y |](n−2)/2H
(1)
(n−2)/2(z |x − y |)IN

− 4−1(2π)(2−n)/2|x − y |1−n[z |x − y |]n/2H(1)
n/2(z |x − y |)α · (x − y)

|x − y |
.

H
(1)
ν ( · ) the Hankel function of the first kind with index ν ⩾ 0.

G0(z ; · , · ) of H0 continuously extends to z ∈ C+. In addition, the limit z → 0
exists

lim
z→0,

z∈C+\{0}

G0(z ; x , y) = i2−1π−n/2Γ(n/2)α · (x − y)

|x − y |n
, x , y ∈ Rn, x ̸= y ,

and (in contrast to m > 0 if n = 2!) no blow up occurs for all n ∈ N, n ⩾ 2.
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Threshold Behavior of H

Spectral Behavior of H:

Since

σess(H) = σess(H0) = σ(H0) = σac(H0) = R, σp(H0) = σsc(H0) = ∅,

one asks, “What could possibly go wrong with σ(H)?” Surely, also
σac(H) = R, right? Well, not so fast!

Even though, σess(H) = R, one could still have embedded eigenvalues, perhaps,
even existence of some singular continuous spectrum, σsc(H), a much dreaded
possibility within some circles of Mathematical Physicists, though, very welcome
by others! (The feeling is community dependent, e.g., atomic scattering theory vs.
condensed matter physics .....)

In fact, zero eigenvalues at energy z = 0 have explicitly been constructed, so one
cannot take anything for granted!

Eventually, we will show that

σac(H) = R, σsc(H) = ∅, and σp(H) ∩ R\{0} = ∅,

but it takes a rather long path getting there.
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Threshold Behavior of H

Threshold Behavior of H:

Note. σess(H(m)) = σess(H0(m)) = (−∞,−m] ∪ [m,∞), m > 0. Thus, the
mass gap, [−m,m] closes as m ↓ 0, hence,

σess(H) = σess(H0) = (−∞, 0] ∪ [0,∞) = R,

but, 0 is still a distinguished and rather “delicate” point! Hence, We’ll
discuss zero-energy (= threshold) resonances and eigenvalues next:

Hypotheses. Let n ∈ N, n ⩾ 2.

Assume the a.e. self-adjoint matrix-valued potential V = {Vℓ,ℓ′}1⩽ℓ,ℓ′⩽N satisfies
for some C ∈ (0,∞),

V ∈ [L∞(Rn)]N×N ,

|Vℓ,ℓ′(x)| ⩽ C (1 + |x |)−2 for a.e. x ∈ Rn, 1 ⩽ ℓ, ℓ′ ⩽ N.

In addition, alluding to the polar decomposition of V ( · ) (i.e.,
V ( · ) = UV ( · )|V ( · )|) in the following symmetrized form, we suppose that

V = V ∗
1 V2 = |V |1/2UV |V |1/2, where V1 = V ∗

1 = |V |1/2, V2 = UV |V |1/2.

(This is a typical quadratic form assumption.)
We continue with the threshold behavior, that is, the z = 0 behavior, of H:
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Threshold Behavior of H

Threshold Behavior of H (contd.):

Definition.

(i) The point 0 is called a zero-energy eigenvalue of H if HΨ = 0 has a
distributional solution Ψ satisfying Ψ ∈ dom(H) = [W 1,2(Rn)]N (equivalently,
ker(H) ⫌ {0}).
(ii) The point 0 is called a zero-energy (or threshold) resonance of H if

ker
([
I[L2(Rn)]N + V2(H0 − (0 + i0)I[L2(Rn)]N )−1V ∗

1

])
⫌ {0},

(a Birman–Schwinger-type operator!) and if there exists
0 ̸= Φ ∈ ker

([
I[L2(Rn)]N +V2(H0 − (0 + i0)I[L2(Rn)]N )−1V ∗

1

])
such that Ψ defined by

Ψ(x) = −
(
(H0 − (0 + i0)I[L2(Rn)]N )

−1V ∗
1 Φ
)
(x)

= −i2−1π−n/2Γ(n/2)

∫
Rn

dny |x − y |−n[α(x − y)]V1(y)
∗Φ(y)

(for a.e. x ∈ Rn, n ⩾ 2) is a distributional solution of HΨ = 0 s.t. Ψ /∈ [L2(Rn)]N .

(iii) 0 is called a regular point for H if it is neither a zero-energy eigenvalue
nor a zero-energy resonance of H. (The generic case.)
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Threshold Behavior of H

Threshold Behavior of H (contd.):

While the point 0 being regular for H is the generic situation, zero-energy
eigenvalues and/or resonances are exceptional cases.

Theorem B (F.G., R. Nichols, 2020).

(i) If n = 2, there are precisely four possible cases:

Case (I ): 0 is regular for H.

Case (II ): 0 is a (possibly at most twice degenerate) resonance of H. In this
case, the resonance functions Ψ satisfy

Ψ ∈ [Lq(R2)]2, q ∈ (2,∞) ∪ {∞}, ∇Ψ ∈ [L2(R2)]2×2,

Ψ /∈ [L2(R2)]2.

Case (III ): 0 is a (possibly degenerate) eigenvalue of H. In this case, the

corresponding eigenfunctions Ψ ∈ dom(H) =
[
W 1,2(R2)

]2
of HΨ = 0 also satisfy

Ψ ∈ [Lq(R2)]2, q ∈ [2,∞) ∪ {∞}.

Case (IV ): A possible mixture of Cases (II ) and (III ).
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Threshold Behavior of H

Threshold Behavior of H (contd.):
Theorem B contd. (F.G., R. Nichols, 2020).

(ii) If n ∈ N, n ⩾ 3, there are precisely two possible cases:

Case (I ): 0 is regular for H.

Case (II ): 0 is a (possibly degenerate) eigenvalue of H. In this case, the

corresponding eigenfunctions Ψ ∈ dom(H) =
[
W 1,2(Rn)

]N
of HΨ = 0 also satisfy

Ψ ∈
[
Lq(Rn)

]N
, q ∈


(3/2,∞) ∪ {∞}, n = 3,

(4/3, 4), n = 4,

(2n/(n + 2), 2n/(n − 2)), n ⩾ 5.

In particular, there are no zero-energy resonances of H in dimension n ⩾ 3.

(iii) The point 0 is regular for H if and only if

ker
([
I[L2(Rn)]N + V2(H0 − (0 + i0)I[L2(Rn)]N )−1V ∗

1

])
= {0}.

Note. For massive Dirac operators H(m), there are no threshold resonances at
energies ±m in dimensions n ⩾ 5; also for Schrödinger operators there are no
zero-energy resonances in dimension n ⩾ 5. (But, threshold eigenvalues can exist.)
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Threshold Behavior of H

Threshold Behavior of H (contd.):

A few elements that enter our proofs:

(1) Lp-properties of Riesz potentials:

Theorem (E.g., Stein, Singular Integrals and Diff. Prop. of Fcts., 1970).

Let n ∈ N, α ∈ (0, n), and introduce the Riesz potential operator Rα,n as
follows (fractional Laplacian on Rn):

(Rα,nf )(x) =
(
(−∆)−α/2f

)
(x) = γ(α, n)−1

∫
Rn

dny |x − y |α−nf (y),

γ(α, n) = πn/22αΓ(α/2)/Γ((n − α)/2),

for appropriate functions f (see below).

(i) Let p ∈ [1,∞) and f ∈ Lp(Rn). Then the integral (Rα,nf )(x) converges for
a.e. x ∈ Rn.

(ii) Let 1 < p < q < ∞, q−1 = p−1 − αn−1, and f ∈ Lp(Rn). Then there exists
Cp,q,α,n ∈ (0,∞) such that

∥Rα,nf ∥Lq(Rn) ⩽ Cp,q,α,n∥f ∥Lp(Rn).
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Threshold Behavior of H

Threshold Behavior of H (contd.):
(2) The Riesz composition formula (e.g., Du Plessis, An Introduction to
Potential Theory, 1970),∫

Rn

dny |x − y |α−n|y − w |β−n = [γ(α, n)γ(β, n)/γ(α+ β, n)]|x − w |α+β−n,

0 < α < n, 0 < β < n, 0 < α+ β < n, x ,w ∈ Rn,

where again γ(α, n) = πn/22αΓ(α/2)/Γ((n − α)/2).
(3) An estimate taken from a 2010 paper by Erdogan and Green:

Lemma.

Let n ∈ N and x1, x2 ∈ Rn. If k , ℓ ∈ [0, n), ε, β ∈ (0,∞), with k + ℓ+ β ⩾ n, and
k + ℓ ̸= n, then∫

Rn

dny |x1 − y |−k [1 + |y |]−(β+ε)|y − x2|−ℓ

⩽ Cn,k,ℓ,β,ε(x1, x2) ·

{
|x1 − x2|−max{0,k+ℓ−n}, |x1 − x2| ⩽ 1,

|x1 − x2|−min{k,ℓ,k+ℓ+β−n}, |x1 − x2| ⩾ 1,

where Cn,k,ℓ,β,ε(x1, x2) ∈ (0,∞).
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Spectral Theory for H

A Limiting Absorption Principle for H:

Using (strongly) locally Kato-smooth operators, the following was proved in
A. Carey, F.G., G. Levitina, R. Nichols, F. Sukochev, and D. Zanin, 2021:

Theorem C (Carey et al., 2021).

Under the previous hypotheses the following hold:

σess(H) = σac(H) = R,
σsc(H) = ∅, σs(H) ∩ (R\{0}) = σp(H) ∩ (R\{0}),

with the only possible accumulation points of σp(H) being 0 and ±∞. Define

N± =
{
λ ∈ R\{0}

∣∣ there exists 0 ̸= f ∈ [L2(Rn)]N s.t.

− f = V2(H0 − (λ± i0)I[L2(Rn)]N )−1V ∗
1 f
}
,

then
N+ = N− := N0 = σp(H) ∩ (R\{0}) = σd(H) ∩ (R\{0}),

and the (geometric) multiplicities of the eigenvalue λ0 ∈ R\{0} of H and the
eigenvalue −1 of V2(H0 − (λ0 ± i0)I[L2(Rn)]N )−1V ∗

1 coincide and are finite.
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Spectral Theory for H

A Limiting Absorption Principle for H (contd.):

Theorem C contd. (Carey et al., 2021).

The operators V1(H0 − (λ± i0)I[L2(Rn)]N )−1V ∗
1 , V1(H − (λ± i0)I[L2(Rn)]N )−1V ∗

1

are Hölder continuous in norm with respect to λ varying in compact subintervals
of R\{0} (resp., R\({0} ∪ N0)).
Finally, the global wave operators

W±(H,H0) = s-lim
t→±∞

e itHe−itH0 ,

exist and are complete, that is,

ker(W±(H,H0)) = {0}, ran(W±(H,H0)) = EH,acH,

with EH,ac the projection onto the absolutely continuous subspace of H.

This is based on the notion of (strongly) locally Kato-smooth operators, an
abstract machinery one can find, e.g., in two AMS volumes (1992 and 2010) by
D. Yafaev. The details are somewhat intense and in the interest of time we take
this for granted.
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Spectral Theory for H

Absence of Embedded Eigenvalues of H:

Assume now in addition that:

(a) For some R > 0, V ∈
[
C 1(ER)

]N×N
, where ER = {x ∈ Rn | |x | ⩾ R}, and that

(x · ∇Vℓ,ℓ′)(x) =
|x|→∞

o(1), 1 ⩽ ℓ, ℓ′ ⩽ N, uniformly with respect to directions.

(b) ess supx∈Rn |x |∥V (x)∥B(CN ) ⩽ C for some C ∈ (0, (n − 1)/2) (smallness of

V !), with ∥ · ∥B(CN ) denoting the operator norm of an N × N matrix in CN .

Theorem D (H. Kalf, T. Okaji, O. Yamada, 2015).

(i) Assume that V satisfies the additional conditions in (a). Then

σp(H) ⊆ {0}.

(ii) Assume that V satisfies the additional conditions (a), (b). Then

σp(H) = ∅.

Note. Combining Thm. D (ii) with our Thm. C, H and H0 are unitarily
equivalent via the wave operators W±(H,H0).
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The Spectral Shift Function for the Pair (H, H0)

SSF in a nutshell: Mark Krein 1953–1962:

Notation. Bp(H), p ∈ [1,∞), denote the ℓp-based trace ideals, i.e., compact,
linear operators T in H whose singular values

(
the eigenvalues of (T ∗T )1/2

)
are

ℓp(N)-summable. (B1(H) the trace class, B2(H) the Hilbert–Schmidt class, ...)

Theorem (M. Krein).

Assume[
(B − zIH)−1 − (A− zIH)−1

]
∈ B1(H), z ∈ ρ(A) ∩ ρ(B). (∗)

Then there exists ξ( · ;B,A) ∈ L1loc(R; dλ) such that∫
R |ξ(λ;B,A)|(1 + λ2)−1 dλ < ∞ and

trH
(
(B − zIH)−1 − (A− zIH)−1

)
= −

∫
R

ξ(λ;B,A) dλ

(λ− z)2
, z ∈ ρ(A) ∩ ρ(B).

The function ξ( · ;B,A) is unique up to a real constant.

Trace formula for φ(λ) = (λ− z)−1 and φ(λ) = (λ− z)−k .

Large class of φ’s are discussed in V. Peller ’85 (he employs Besov spaces).
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The Spectral Shift Function for the Pair (H, H0)

SSF in a nutshell: Mark Krein 1953–1962 (contd.)

Corollary. (Eigenvalue counting in essential spectral gaps.)

If δ = (a, b) and δ ∩ σess(A) = ∅ then

ξ(b−;B,A)− ξ(a+;B,A) = dim(ran(EB(δ)))− dim(ran(EA(δ))).

The Birman–Krein formula.

Assume[
(B − zIH)−1 − (A− zIH)−1

]
∈ B1(H), z ∈ ρ(A) ∩ ρ(B). (∗)

Then the scattering matrix {S(λ;B,A)}λ∈σac (A) for the pair (B,A) satisfies

det(S(λ;B,A)) = e−2πiξ(λ;B,A) for a.e. λ ∈ σac(A).
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The Spectral Shift Function for the Pair (H, H0)

The Krein–Lifshitz spectral shift function ξ:

“On the shoulders of giants”:

Ilya Mikhailovich Lifshitz (January 13, 1917 – October 23, 1982):

Well-known Theoretical Physicist: Worked in solid
state physics, electron theory of metals, disordered sys-
tems, Lifshitz tails, Lifshitz singularity, the theory of poly-
mers; introduced the concept of the spectral shift
function for finite-rank perturbations in 1952.

Mark Grigorievich Krein (April 3, 1907 – October 17, 1989):

Mathematician Extraordinaire:
One of the giants of 20th century
mathematics, Wolf Prize in Math-
ematics in 1982; introduced the
theory of the spectral shift func-
tion in the period of 1953–1963.
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The Spectral Shift Function for the Pair (H, H0)

SSF: Generalizations

Theorem (D. R. Yafaev ’05).

Assume that for some odd, r ∈ N,[
(B − zIH)−r − (A− zIH)−r

]
∈ B1(H).

Then there exists ξ( · ;B,A) ∈ L1loc(R; dλ) such that∫
R |ξ(λ;B,A)|(1 + |λ|)−(r+1) dλ < ∞ and

trH
(
(B − zIH)−r − (A− zIH)−r

)
=

∫
R

−r

(λ− z)r+1
ξ(λ;B,A) dλ,

z ∈ ρ(A) ∩ ρ(B).

Note. (i) Yafaev assumes no spectral gaps of A −→ applicable to massless
Dirac-type operators H,H0, the prime examples of non-Fredholm operators.

(ii) The case r = 1 works for ODE operators only. To treat PDE operators,
r = r(n) > 1 has to be appropriately chosen depending on the space dimension n
involved, in fact, the choice r = n works for the massless Dirac operators H,H0.
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The Spectral Shift Function for the Pair (H, H0)

SSF: Generalizations (contd.):

To prove our principal result on the pair of Dirac operators (H,H0) we employ
the following representation for spectral shift functions ξ( · ;B,A) in terms of
modified (or regularized) Fredholm determinants which is applicable to the
multi-dimensional case:

Hypothesis.

Let A and B be self-adjoint operators in H with (B − A) ∈ B(H).

(i) If r ∈ N is odd, assume[
(B − zIH)−r − (A− zIH)−r

]
∈ B1(H), z ∈ C\R.

and
(B − A)(A− zIH)−j ∈ B(r+1)/j(H), j ∈ N, 1 ⩽ j ⩽ r + 1.

(ii) If r ∈ N is even, assume in addition that for some 0 < ε < 1/2,

(B − A)
(
A2 + IH

)−(r/2)−ε ∈ B1(H).
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The Spectral Shift Function for the Pair (H, H0)

SSF: Generalizations (contd.):

Introduce

FB,A(z) := ln
(
detH,r+1

(
(B − zIH)(A− zIH)−1

))
, z ∈ C\R,

where detH,r+1(IH + T ) denotes the modified (or regularized) Fredholm
determinant for operators T in the trace ideal Br+1(H).

In addition, introduce the analytic function GB,A( · ) in C\R such that

d r

dz r
GB,A(z) = trH

(
d r−1

dz r−1

r−1∑
j=0

(−1)r−j(A− zIH)−1B(z)r−j

)
, z ∈ C\R.

Here we used the abbreviation B(z) = (B − A)(A− zIH)−1.

Then there exist polynomials P±,r−1 of degree less than or equal to r − 1 such that

FB,A(z) = (z − i)r
∫
R

ξ(λ;B,A)dλ

(λ− i)r
1

λ− z
+ GB,A(z) + P±,r−1(z), z ∈ C±.
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The Spectral Shift Function for the Pair (H, H0)

SSF: Generalizations (contd.):

These preparations finally lead to the following representation for ξ( · ;B,A):

Theorem E (A. Carey et al., 2021).

If FB,A and GB,A have normal boundary values on R, then for a.e. λ ∈ R,

ξ(λ;B,A) = π−1Im(FB,A(λ+ i0))− π−1Im(GB,A(λ+ i0)) + Pr−1(λ)

for a.e. λ ∈ R,

where Pr−1 is a polynomial of degree less than or equal to r − 1.

Thus, to analyze continuity properties of ξ(λ;B,A), one focuses on properties of
the (normal, or nontangential) boundary values of FB,A(λ+ i0) and
GB,A(λ+ i0), λ ∈ R.
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The Spectral Shift Function for the Pair (H, H0)

SSF for the pair of Dirac operators (H ,H0):

Hypotheses. Let n ∈ N and suppose that V = {Vℓ,ℓ′}1⩽ℓ,ℓ′⩽N satisfies for some
constants C ∈ (0,∞) and ε > 0,

V ∈ [L∞(Rn)]N×N , |Vℓ,ℓ′(x)| ⩽ C (1+|x |)−n−1−ε for a.e. x ∈ Rn, 1 ⩽ ℓ, ℓ′ ⩽ N.

Note. We now assume much more decay of V ( · ) at infinity to guarantee
existence of ξ( · ;H,H0).

In addition, assume that V (x) = {Vℓ,ℓ′(x)}1⩽ℓ,ℓ′⩽N is self-adjoint for a.e. x ∈ Rn.
In accordance with the factorization based on the polar decomposition of V we
suppose that V = V ∗

1 V2 = |V |1/2UV |V |1/2, where V1 = V ∗
1 = |V |1/2,

V2 = UV |V |1/2.
Finally, assume that V satisfies condition (a) in Theorem D, i.e.,

(a) For some R > 0, V ∈
[
C 1(ER)

]N×N
, where ER = {x ∈ Rn | |x | ⩾ R}, and that

(x · ∇Vℓ,ℓ′)(x) =
|x|→∞

o(1), 1 ⩽ ℓ, ℓ′ ⩽ N, uniformly with respect to directions.

Note. This is our final and complete list of hypotheses on V .
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The Spectral Shift Function for the Pair (H, H0)

SSF for the pair of Dirac operators (H ,H0) (contd.):

The principal result of A. Carey, F.G., G. Levitina, R. Nichols, F. Sukochev,
and D. Zanin, 2021 then reads as follows:

Theorem F (Carey et al., 2021).

Assume the above hypotheses on V . Then

ξ( · ;H,H0) ∈ C ((−∞, 0) ∪ (0,∞)),

and the left and right limit at zero,

ξ(0±;H,H0) = lim
ε↓0

ξ(±ε;H,H0), exists.

In particular, if 0 is a regular point for H, then ξ( · ;H,H0) ∈ C (R).

Thus, Witten Index applications now are possible in n dimensions, n ∈ N.

The proof relies on a barrage of trace norm estimates of resolvent differences to
guarantee the existence of ξ( · ;H,H0), and, as indicated, on a representation of
ξ( · ;H,H0) in terms of nontangential boundary values to the real axis of an
underlying modified (regularized) Fredholm determinant. It’s a long story ......
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The Spectral Shift Function for the Pair (H, H0)

Based on:

• A. Carey, F.G., J. Kaad, G. Levitina, R. Nichols, D. Potapov, and
F. Sukochev, On the Global Limiting Absorption Principle for Massless Dirac
Operators, Ann. H. Poincaré 19, 1993–2019 (2018).

• F.G. and R. Nichols, On Absence of Threshold Resonances for Schrödinger
and Dirac Operators, Discrete Cont. Dyn. Syst, Ser. S, 13, 3427–3460 (2020).

• A. Carey, F.G., G. Levitina, R. Nichols, F. Sukochev, and D. Zanin, The
Limiting Absorption Principle for Massless Dirac Operators, Properties of Spectral
Shift Functions, and an Application to the Witten Index of Non-Fredholm
Operators, Memoirs of the EMS 4 (2023), 213pp.

Thank you!
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