The direct and inverse scattering problems for the first-order linear discrete system associated with the derivative NLS system

Ramazan Ercan

Department of Mathematics
California State University San Marcos
San Marcos, California USA

August 10, 2024

AMP Conference 2024 Analysis and Mathematical Physics

(joint with Prof. T. Aktosun)

Main reference

T. Aktosun and R. Ercan, *Direct and inverse scattering problems for the first-order discrete system associated with the derivative NLS system*, Stud. Appl. Math. **148**, 270-339 (2022).

DOI: 10.1111/sapm.12441

ORIGINAL ARTICLE

Direct and inverse scattering problems for the first-order discrete system associated with the derivative NLS system

T. Aktosun | R. Ercan

Department of Mathematics, University of Texas at Arlington, Arlington Texas, USA

Correspondence
T. Aktosun, Department of Mathematics,
University of Texas at Arlington, Arlington, TX 76019, USA
Email: aktosun@uta.edu

Abstract

for a first-order discrete system associated with the semidiscrete version of the derivative nonlinear Schrödinger (NLS) system. The Jost solutions, the scattering coefficients, the bound-state dependency and norming constants are investigated and related to the corresponding quantities for two particular discrete linear systems associated with the semi-discrete version of the NLS system. The bound-state data set with any multiplicities is described in an elegant manner in terms of a pair of constant matrix triplets. Several methods are presented to solve the inverse problem to recover the potential values in the first-order discrete system. One of these methods uses a newly derived, standard discrete Marchenko system using as input the scattering data directly coming from the first-order discrete system. This new Marchenko method is presented in a way that it is generalizable to other first-order systems both in the discrete and continuous cases for which a Marchenko system and a Marchenko theory are not yet available. Finally, using the time-evolved scattering data set, the inverse scattering transform is applied on the corresponding semi-discrete derivative NLS system, and in

The direct and inverse scattering problems are analyzed

Outline

- DDNLS: semi-discrete derivative NLS (nonlinear Schrödinger) system
- Derivation of DDNLS system by using AKNS method
- 3 Linear system associated with DDNLS system
- Contrast with DNLS, continuous case
- Marchenko method to solve integrable systems
- Marchenko method to solve DDNLS system
- 7 Contrast with Marchenko method for solve DNLS
- Explicit solution formulas for DDNLS system using a pair of matrix triplets

↓□▶ ←□▶ ←□▶ ←□▶ □ ♥♀♀

$$\begin{cases} i\dot{q}_n + \frac{q_{n+1}}{1 - q_{n+1}r_{n+1}} - \frac{q_n}{1 - q_nr_n} - \frac{q_n}{1 + q_nr_{n+1}} + \frac{q_{n-1}}{1 + q_{n-1}r_n} = 0, \\ i\dot{r}_n - \frac{r_{n+1}}{1 + q_nr_{n+1}} + \frac{r_n}{1 + q_{n-1}r_n} + \frac{r_n}{1 - q_nr_n} - \frac{r_{n-1}}{1 - q_{n-1}r_{n-1}} = 0. \end{cases}$$

- $q_n := q_n(t), \quad r_n := r_n(t)$
- $1-q_nr_n\neq 0, \quad 1+q_nr_{n+1}\neq 0, \qquad n\in\mathbb{Z}, \quad t\in\mathbb{R}$
- overdot t-derivative

Derivation of DDNLS system by using AKNS method

 \blacksquare ($\mathcal{X}_n, \mathcal{T}_n$) AKNS pair

$$\mathcal{X}_{n} = \begin{bmatrix} z & \left(z - \frac{1}{z}\right)q_{n} \\ \\ z r_{n} & \frac{1}{z} + \left(z - \frac{1}{z}\right)q_{n}r_{n} \end{bmatrix},$$

$$\mathcal{T}_{n} = \begin{bmatrix} \frac{-i(z^{2}-1)[1+(z^{2}+1)\,q_{n-1}\,r_{n}]}{z^{2}(1+q_{n-1}\,r_{n})} & \frac{i(z^{2}-1)q_{n-1}}{1+q_{n-1}\,r_{n}} - \frac{i(z^{2}-1)q_{n}}{z^{2}(1-q_{n}\,r_{n})} \\ \frac{-ir_{n-1}}{1-q_{n-1}\,r_{n-1}} + \frac{i\,z^{2}\,r_{n}}{1+q_{n-1}\,r_{n}} & \frac{i(z^{2}-1)}{1+q_{n-1}\,r_{n}} \end{bmatrix}.$$

■ DDNLS derived by imposing the compatibility condition

$$\dot{\mathcal{X}}_n + \mathcal{X}_n \, \mathcal{T}_{n+1} - \mathcal{T}_n \, \mathcal{X}_n = 0.$$

4 D > 4 A > 4 B > 4 B > B 900

The linear system associated with DDNLS system

$$\begin{bmatrix} \alpha_n \\ \beta_n \end{bmatrix} = \begin{bmatrix} z & \left(z - \frac{1}{z}\right) q_n \\ z r_n & \frac{1}{z} + \left(z - \frac{1}{z}\right) q_n r_n \end{bmatrix} \begin{bmatrix} \alpha_{n+1} \\ \beta_{n+1} \end{bmatrix}, \quad n \in \mathbb{Z}, \quad t \in \mathbb{R}.$$

- n discrete independent variable
- z spectral parameter
- \blacksquare q_n and r_n complex-valued scalar quantities, potentials
- $\begin{bmatrix} \alpha_n \\ \beta_n \end{bmatrix}$ value of wavefunction at spacial location n

R. Ercan

Tsuchida's formulation of the linear system for DDNLS

■ Tsuchida (2002)

$$\begin{bmatrix} \alpha_{n+1} \\ \beta_{n+1} \end{bmatrix} = \begin{bmatrix} z - \left(z - \frac{1}{z}\right) q_n r_n & q_n \\ \left(-1 + \frac{1}{z^2}\right) r_n & \frac{1}{z} \end{bmatrix} \begin{bmatrix} \alpha_n \\ \beta_n \end{bmatrix}, \qquad n \in \mathbb{Z}, \quad t \in \mathbb{R}.$$

■ Tsuchida (2012)

$$\begin{bmatrix} \alpha_n \\ \beta_n \end{bmatrix} = \begin{bmatrix} z & \left(z - \frac{1}{z}\right) q_n \\ z r_n & \frac{1}{z} + \left(z - \frac{1}{z}\right) q_n r_n \end{bmatrix} \begin{bmatrix} \alpha_{n+1} \\ \beta_{n+1} \end{bmatrix}, \quad n \in \mathbb{Z}, \quad t \in \mathbb{R}.$$

Contrast with DNLS system, continuous version

DNLS system

$$\begin{cases} iq_t + q_{xx} - i(q^2r)_x = 0, \\ ir_t - r_{xx} - i(qr^2)_x = 0, \end{cases} x, t \in \mathbb{R}.$$

- q = q(x, t) and r = r(x, t)
- linear system associated with the DNLS system

$$\frac{d}{dx} \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \begin{bmatrix} -i\lambda & \sqrt{\lambda} \, q(x,t) \\ \sqrt{\lambda} \, r(x,t) & i\lambda \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \end{bmatrix}, \qquad x,t \in \mathbb{R}.$$

- λ spectral parameter
- x spacial coordinate, t time
- $\sqrt{\lambda} q(x), \sqrt{\lambda} r(x)$ energy-dependent potentials

◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ 釣 久 ○

The Marchenko method to solve integrable systems

■ Inverse Scattering Transform

$$V(x,0) \xrightarrow{\text{direct scattering at } t=0} S(k,0) \xrightarrow{\text{Fourier transform at } t=0} F(y,0)$$

solution \downarrow time evolution \downarrow time e

recover the potential from the solution to the Marchenko system

$$V(x,0) \xrightarrow{\text{Marchenko kernel at } t=0} F(y,0) \xrightarrow{\text{time evolution}} F(y,t)$$
solution $\downarrow \qquad \qquad \qquad \downarrow \text{input to Marchenko system}$
 $V(x,t) \xleftarrow{\text{recover the potential}} K(x,x^+,t) \xleftarrow{\text{recover the potential}} K(x,y,t)$

The Marchenko system for DDNLS

$$\begin{bmatrix} \bar{M}_{nm} & M_{nm} \end{bmatrix} + \begin{bmatrix} 0 & \bar{\Omega}_{n+m} \\ \Omega_{n+m} & 0 \end{bmatrix}$$

$$+ \sum_{l=n+1}^{\infty} \begin{bmatrix} \bar{M}_{nl} & M_{nl} \end{bmatrix} \begin{bmatrix} 0 & \bar{\Omega}_{l+m} \\ \Omega_{l+m} & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, \quad m > n, \quad t \in \mathbb{R}.$$

- reflection coefficients R(z, t) and $\bar{R}(z, t)$
 - $R(z,t) = R(z,0) e^{-it(z-z^{-1})^2}, \qquad \bar{R}(z,t) = \bar{R}(z,0) e^{it(z-z^{-1})^2}.$
 - $\hat{R}_k(t) := \frac{1}{2\pi i} \oint dz \, R(z,t) \, z^{k-1}, \qquad \hat{\bar{R}}_k(t) := \frac{1}{2\pi i} \oint dz \, \bar{R}(z,t) \, z^{-k-1}.$
- bound-state data via the matrix triplets (A, B, C) and $(\bar{A}, \bar{B}, \bar{C})$

The matrix triplets (A, B, C) and $(\bar{A}, \bar{B}, \bar{C})$

$$A := \begin{bmatrix} A_1 & 0 & \cdots & 0 \\ 0 & A_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & A_N \end{bmatrix}, \quad B := \begin{bmatrix} B_1 \\ B_2 \\ \vdots \\ B_N \end{bmatrix}, \quad C := \begin{bmatrix} C_1 & C_2 & \cdots & C_N \end{bmatrix},$$

$$A_j := \begin{bmatrix} z_j & 1 & 0 & \cdots & 0 & 0 \\ 0 & z_j & 1 & \cdots & 0 & 0 \\ 0 & 0 & z_j & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & z_j & 1 \\ 0 & 0 & 0 & \cdots & 0 & z_j \end{bmatrix}, \quad B_j := \begin{bmatrix} 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix},$$

$$C_j := \begin{bmatrix} c_{j(m_j-1)} & c_{j(m_j-2)} & \cdots & c_{j1} & c_{j0} \end{bmatrix}.$$

- all z_j for $1 \le j \le N$ are inside the unit circle |z| = 1.
- each z_i has multiplicity m_i .

The matrix triplets (A, B, C) and $(\bar{A}, \bar{B}, \bar{C})$,

$$\bar{A} := \begin{bmatrix} \bar{A}_1 & 0 & \cdots & 0 \\ 0 & \bar{A}_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \bar{A}_{\bar{N}} \end{bmatrix}, \quad \bar{B} := \begin{bmatrix} \bar{B}_1 \\ \bar{B}_2 \\ \vdots \\ \bar{B}_{\bar{N}} \end{bmatrix}, \quad \bar{C} := \begin{bmatrix} \bar{C}_1 & \bar{C}_2 & \cdots & \bar{C}_{\bar{N}} \end{bmatrix},$$

$$\bar{A}_j := \begin{bmatrix} \bar{z}_j & 1 & 0 & \cdots & 0 & 0 \\ 0 & \bar{z}_j & 1 & \cdots & 0 & 0 \\ 0 & 0 & \bar{z}_j & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & \bar{z}_j & 1 \\ 0 & 0 & 0 & \cdots & 0 & \bar{z}_j \end{bmatrix}, \quad \bar{B}_j := \begin{bmatrix} 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix}$$

$$\bar{C}_j := \begin{bmatrix} \bar{c}_{j(\bar{m}_j - 1)} & \bar{c}_{j(\bar{m}_j - 2)} & \cdots & \bar{c}_{j1} & \bar{c}_{j0} \end{bmatrix},$$

- all \bar{z}_i for $1 \le i \le \bar{N}$ are outside the unit circle |z| = 1,
- each \bar{z}_i has multiplicity \bar{m}_i ,

4 D > 4 A > 4 B > 4 B > B 900

The Marchenko system for DDNLS, the uncoupled version

$$\begin{cases} \left[M_{nm}\right]_{1} + \bar{\Omega}_{n+m} - \sum_{l=n+1}^{\infty} \sum_{j=n+1}^{\infty} \left[M_{nj}\right]_{1} & \Omega_{j+l} \bar{\Omega}_{l+m} = 0, \qquad m > n, \quad t \in \mathbb{R}, \\ \left[\bar{M}_{nm}\right]_{2} + \Omega_{n+m} - \sum_{l=n+1}^{\infty} \sum_{j=n+1}^{\infty} \left[\bar{M}_{nj}\right]_{2} & \bar{\Omega}_{j+l} \Omega_{l+m} = 0, \qquad m > n, \quad t \in \mathbb{R}, \\ \\ \left[\bar{M}_{nm}\right]_{1} = - \sum_{l=n+1}^{\infty} \left[M_{nl}\right]_{1} & \Omega_{l+m}, \qquad m > n, \quad t \in \mathbb{R}, \\ \\ \left[M_{nm}\right]_{2} = - \sum_{l=n+1}^{\infty} \left[\bar{M}_{nl}\right]_{2} & \bar{\Omega}_{l+m}, \qquad m > n, \quad t \in \mathbb{R}. \end{cases}$$

 $[\cdot]_1$ and $[\cdot]_2$ denote the first and second components of the relevant column vectors

4 D > 4 A > 4 B > 4 B > B 9 Q Q

Recovery of potentials q_n and r_n

$$q_{n} = \frac{\sum_{l=n}^{\infty} [M_{nl}]_{1} \sum_{k=n}^{\infty} [M_{nk}]_{2}}{\sum_{l=n}^{\infty} [\bar{M}_{nl}]_{1} \sum_{k=n}^{\infty} [M_{nk}]_{2} - \sum_{l=n}^{\infty} [M_{nl}]_{1} \sum_{k=n}^{\infty} [\bar{M}_{nk}]_{2}}, \quad n \in \mathbb{Z}, \quad t \in \mathbb{R},$$

$$r_{n} = \frac{\sum_{l=n-1}^{\infty} [\bar{M}_{(n-1)l}]_{2}}{\sum_{l=n-1}^{\infty} [M_{(n-1)l}]_{2}} - \frac{\sum_{l=n}^{\infty} [\bar{M}_{nl}]_{2}}{\sum_{l=n}^{\infty} [M_{nl}]_{2}}, \quad n \in \mathbb{Z}, \quad t \in \mathbb{R}.$$

Contrast with the Marchenko method for DNLS system

linear system of Marchenko integral equations

$$\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} \bar{K}_1(x, y, t) & K_1(x, y, t) \\ \bar{K}_2(x, y, t) & K_2(x, y, t) \end{bmatrix} + \begin{bmatrix} 0 & \bar{\Omega}(x + y, t) \\ \Omega(x + y, t) & 0 \end{bmatrix}$$
$$+ \int_x^{\infty} dz \begin{bmatrix} -iK_1(x, z, t)\Omega'(z + y, t) & \bar{K}_1(x, z, t)\bar{\Omega}(z + y, t) \\ K_2(x, z, t)\Omega(z + y, t) & i\bar{K}_2(x, z, t)\bar{\Omega}'(z + y, t) \end{bmatrix}, \qquad x < y.$$

- reflection coefficients $R(\sqrt{\lambda}, 0)$ and $\bar{R}(\sqrt{\lambda}, 0)$
- bound-state data via the matrix triplets (A, B, C) and $(\bar{A}, \bar{B}, \bar{C})$

$$\begin{cases} \Omega(y,t) := \frac{1}{2\pi} \int_{-\infty}^{\infty} d\lambda \, \frac{R(\sqrt{\lambda},0)}{\sqrt{\lambda}} \, e^{4i\lambda^2 t} e^{i\lambda y} + C \, e^{4iA^2 t} e^{iAy} \, B, \\ \bar{\Omega}(y,t) := \frac{1}{2\pi} \int_{-\infty}^{\infty} d\lambda \, \frac{\bar{R}(\sqrt{\lambda},0)}{\sqrt{\lambda}} \, e^{-4i\lambda^2 t} e^{-i\lambda y} + \bar{C} \, e^{-4i\bar{A}^2 t} e^{-i\bar{A}y} \, \bar{B}. \end{cases}$$

4□ > 4□ > 4□ > 4□ > 4□ > 900

Contrast with recovery of potentials in the DNLS system

$$\begin{cases} q(x,t) = -2K_1(x,x,t) \exp\left(-4\int_x^\infty dz \left[\bar{K}_1(z,z,t) - K_2(z,z,t)\right]\right), \\ r(x,t) = -2\bar{K}_2(x,x,t) \exp\left(4\int_x^\infty dz \left[\bar{K}_1(z,z,t) - K_2(z,z,t)\right]\right). \end{cases}$$

R. Ercan

Reflectionless case: explicit solutions for DDNLS system

- reflectionless case: separable-kernel Marchenko system and hence explicit solutions
- closed-form, compact formulas for explicit solutions involving matrix exponentials
- "unpacking" matrix exponentials yields explicit solutions in terms of elementary functions
- use (A, B, C) and $(\bar{A}, \bar{B}, \bar{C})$ as input to the Marchenko system
- lacksquare obtain the Marchenko solution $\left[\mathit{M}_{\mathit{nm}}\right]_1$, $\left[\mathit{M}_{\mathit{nm}}\right]_2$, $\left[\bar{\mathit{M}}_{\mathit{nm}}\right]_1$, and $\left[\bar{\mathit{M}}_{\mathit{nm}}\right]_2$
- \blacksquare obtain q_n and r_n

4□ > 4同 > 4 亘 > 4 亘 > □

Explicit solutions using (A, B, C) and $(\bar{A}, \bar{B}, \bar{C})$

 \blacksquare construct $\mathcal{E}, \bar{\mathcal{E}}, \Upsilon,$ and $\bar{\Upsilon}$ via

$$\mathcal{E} := e^{-it(A-A^{-1})^2}, \quad \bar{\mathcal{E}} := e^{it[\bar{A}-(\bar{A})^{-1}]^2}, \quad \Upsilon := \sum_{k=0}^{\infty} A^k \, B \, \bar{C} \, (\bar{A})^{-k}, \quad \bar{\Upsilon} := \sum_{k=0}^{\infty} (\bar{A})^{-k} \, \bar{B} \, C \, A^k.$$

• construct U_n and \bar{U}_n via

$$U_n:=I-\bar{\mathcal{E}}\,(\bar{A})^{-n-2}\,\bar{\Upsilon}\,\mathcal{E}\,A^{2n+1}\,\Upsilon\,(\bar{A})^{-n-1},\quad \bar{U}_n:=I-\mathcal{E}A^n\Upsilon\bar{\mathcal{E}}(\bar{A})^{-2n-3}\,\bar{\Upsilon}\,A^{n+1}.$$

lacksquare construct $ig[M_{nm}ig]_1$, $ig[M_{nm}ig]_2$, $ig[ar{M}_{nm}ig]_1$, and $ig[ar{M}_{nm}ig]_2$ via

$$\begin{cases} \left[M_{nm}\right]_{1} = -\bar{C}(\bar{A})^{-n}(U_{n})^{-1}\bar{\mathcal{E}}(\bar{A})^{-m-1}\bar{B}, \\ \left[M_{nm}\right]_{2} = CA^{n}(\bar{U}_{n})^{-1}\mathcal{E}A^{n}\Upsilon\bar{\mathcal{E}}(\bar{A})^{-n-m-2}\bar{B}, \\ \left[\bar{M}_{nm}\right]_{1} = \bar{C}(\bar{A})^{-n}(U_{n})^{-1}\bar{\mathcal{E}}(\bar{A})^{-n-2}\bar{\Upsilon}\mathcal{E}(A)^{n+m}B, \\ \left[\bar{M}_{nm}\right]_{2} = -CA^{n}(\bar{U}_{n})^{-1}\mathcal{E}A^{m-1}B. \end{cases}$$

• obtain q_n and r_n explicitly in terms of (A, B, C) and $(\bar{A}, \bar{B}, \bar{C})$.

4 D > 4 D > 4 E > 4 E > E *) Q (*

R. Ercan

References

- M. J. Ablowitz and P. A. Clarkson, Solitons, nonlinear evolution equations and inverse scattering, Cambridge Univ. Press, Cambridge, 1991.
- M. J. Ablowitz and H. Segur, Solitons and the inverse scattering transform, SIAM, Philadelphia, 1981.
- M. J. Ablowitz, B. Prinari, and A. D. Trubatch, *Discrete and continuous nonlinear Schrödinger systems*, Cambridge Univ. Press, Cambridge, 2003.
- T. Aktosun and R. Ercan, *Direct and inverse scattering problems for a first-order system with energy-dependent potentials*, Inverse Problems **35**, 085002 (2019).
- T. Aktosun and R. Ercan, Direct and inverse scattering problems for the first-order discrete system associated with the derivative NLS system, Stud. Appl. Math. 148, 270–339 (2022).
- R. Ercan, Scattering and inverse scattering on the line for a first-order system with energy-dependent potentials, Ph.D. thesis, The University of Texas at Arlington, 2018.
- T. Tsuchida, Integrable discretizations of derivative nonlinear Schrödinger equations, J. Phys. A 35, 7827–7847 (2002).
- T. Tsuchida, A refined and unified version of the inverse scattering method for the Ablowitz–Ladik lattice and derivative NLS lattices, preprint, arXiv:1206.3210.

←ロト ←団 ト ← 巨 ト ← 巨 ・ りへで