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Direct and inverse scattering problems for the
first-order discrete system associated with the
derivative NLS system

T.Aktosun | R.Ercan

Departmentof Mathematics, Univerity of
Texas at Arlington, Arlington Texas, USA Abstract

The direct and inverse scattering problems are analyzed
Correspondence fora first-order with the semi-
Universtyof Texssat Aringon. Ang- | discrete version of the derivative nonlinear Schrédinger

ton, TXT6019,USA

Lon TS i (NLS) system. The Jost solutions, the scattering coeffi-

cients, the bound-state dependency and norming con-
stants are investigated and related to the correspond-
ing quantities for two particular discrete linear systems
associated with the semi-discrete version of the NLS
system. The bound-state data set with any multiplic-
ities is described in an elegant manner in terms of a
pair of constant matrix triplets. Several methods are
presented to solve the inverse problem to recover the
potential values in the first-order discrete system. One
of these methods uses a newly derived, standard dis-
crete Marchenko system using as input the scattering
data directly coming from the first-order discrete sys-
tem. This new Marchenko method is presented in a
way that it is generalizable to other first-order systems
both in the discrete and continuous cases for which a

Marchenko system and a Marchenko theory are not yet
available. Finally, using the time-evolved scattering data
set, the inverse scattering transform is applied on the cor-
responding semi-discrete derivative NLS system, and in
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Outline

DDNLS: semi-discrete derivative NLS (nonlinear Schrddinger) system
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Derivation of DDNLS system by using AKNS method

B

Linear system associated with DDNLS system

Contrast with DNLS, continuous case

B =8

Marchenko method to solve integrable systems

Marchenko method to solve DDNLS system

H 2

Contrast with Marchenko method for solve DNLS

Explicit solution formulas for DDNLS system using a pair of matrix triplets

DDNLS system R. Ercan



DDNLS system
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Derivation of DDNLS system by using AKNS method

B (Xn, Tn) AKNS pair

= 1 1 ’
ZIn *+(Z—*)Qnrn
V4 V4

—i(ZZ =D+ +1)q1m] (22— 1)Gn-1 i(z2 — 1)gn

T 22(1 + gn—11n) 14+ an_1t z2(1 —gnt)
=
—irn_y iz2r, i(z2 —1)
1—Qn_1mm- 1+qn_1m 1+qn1m

m DDNLS derived by imposing the compatibility condition

Xn+Xn777+1 — Tn&Xn=0.
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The linear system associated with DDNLS system

}, nez, teR.

m n discrete independent variable
m z spectral parameter

B gpand r, complex-valued scalar quantities, potentials

Qan . . .
[ ] [5 } value of wavefunction at spacial location n
n
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Tsuchida’s formulation of the linear system for DDNLS

m Tsuchida (2002)

1
|:Om+1:| ‘- (Z h E) nfn - Qn l:an

/Bn+1

m Tsuchida (2012)
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Contrast with DNLS system, continuous version

m DNLS system

igr + qux — i(gPr)x =0,
x,teR.

irt — rec — i(qu)x =0,
mg=gq(x,t)andr = r(x,t)

m linear system associated with the DNLS system

d [« —iX VAqx, )| o
il = , x,teR.
ox [ﬁ] VAt A [ﬁ]

m ) spectral parameter
m x spacial coordinate, t time

m VX g(x), VAr(x) energy-dependent potentials
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The Marchenko method to solve integrable systems

m Inverse Scattering Transform

direct scattering at t=0 Fourier transform at t=0
V(x,0) ———— S§(k,0) ——  F(,0)
solutionl ltime evolution Jtime evolution
V(x,t S(k,t F(y,t
( ’ ) inverse scattering at time ¢ ( ’ ) inverse Fourier transform at time ¢t (y’ )

m recover the potential from the solution to the Marchenko system
V(X, 0) Marchenko kernel at =0 F(y, O) time evolution F(y, 1‘)

solutionl linput to Marchenko system

Vix,t) +——— K(x,xt) «—— K(x,y,1)

recover the potential recover the potential
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The Marchenko system for DDNLS

m reflection coefficients R(z,t) and R(z, t)
i —1\2 = = i, ,—1\2
m R(z,t) = R(z,0)e "¢=27 )" R(z,t) = R(z,0) "2 )",
m R(t) 7—fdzﬁ’(zt . B 7—}{dzR(zt z7k
m bound-state data via the matrix triplets (A, B, C) and (A, B, C)
m C(t) = C(0) e "™A—A""% Bty = §(0) A~

Q= B+ CA1B, Q4 :=FRc+C(A)*'B,  keven,
Qk = 07 Qk = 0, k odd.
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The matrix triplets (A, B, C) and (A, B, C)

A O 0 By
0 A - 0 B,
A= : : . p B:= e C:=[Ci C -+ Cp],
0 0 An By
z 1 0 0 0
0 z 1 0 0 0
0 0 gz 00 :
A= o . B=|:,
: 0
00 0 - z 1 1
00 0 ... 0 z
G = [Cj(mﬂ) Gi(mj—2) - Gt C/O] .

m all z for 1 < j < N are inside the unit circle |z] = 1.

m each z; has multiplicity m;.
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The matrix triplets (A, B, C) and (A, B, C),

Ar 0 -~ 0 B,
o A 0 B| . .
A= , |, B= , C=[C G Cxl
0 0 A5 By
7z 1 0 00
0z 1 0 0 0
|0 0 3 o o]
A] = . . . s Bj =
0 0 0 EA 1
0 0 0 z
C = [Gm-n Gm-2 - G o,

m all Z; for 1 < j < N are outside the unit circle |z| = 1,

m each z; has multiplicity m;,
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The Marchenko system for DDNLS, the uncoupled version

oo o0
["/’nm}1 +Qnim— > D [MnjL Q11 Q4m =0, m>n, teR,
I=n+1 j=n+1

oo oo

[I\_/Inm} + Qnim — Z Z [/\_/In/} Qj+l Qm=0, m>n, teR,
2 I=n+1 j=n+1 2

[e<)

[I\_/I,,,,,]1 == > [M,,,]1 Qm, mM>n, teR,
I=n+1

Mo, == 32 ], Qume m>n. tem
I=n+1

m [-]1 and [-], denote the first and second components of the relevant column vectors
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Recovery of potentials g, and r,

an = = - — = , NEZ, tER,
Z [M”’]1 Z [M”k]z - Z [M,,,]1 Z [Mnk]z
I=n k=n I=n k=n
o B oo
Do Mo, ST M,
= - £ , NeEZ, teR
Yo Moy D Mal,
I=n—1 I=n
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Contrast with the Marchenko method for DNLS system

m linear system of Marchenko integral equations
0 0 0 Qx+y,1)
0 0 Qx +y,t) 0

. R1(X7Y:f) K1(X,,V7t)
RZ(X7Y7 t) KZ(X7y7 t)

+/ az
X

m reflection coefficients R(+v/A, 0) and R(v/), 0)

—iKi(x,z,) Q' (z+y,t)  Ki(x,2,)Qz+y,1)
Ko(x,2,)Qz+y,t)  iKa(x,2,0) (2 +y,1)]

m bound-state data via the matrix triplets (A, B, C) and (A, B, C)

1 R . ) )
Qy, 1) = P d)\ (\/\; 0 NPt giny + C iRt gity B,
= 1 [/~ RWA o
Qy,t) .= — / d\ % e~ 4Nt g—ixy 1 Ce%iRtg—iAy g
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Contrast with recovery of potentials in the DNLS system

q(x, t) = —2Ky(x, x, t) exp <74 /Oo dz [Ki(z,z,t) — Ka(z, 2, t)]) ,

r(x, t) = —2Kx(x, x, t) exp (4/oo dz [Ki(z,z,t) — Ka(z, 2, t)]) .
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Reflectionless case: explicit solutions for DDNLS system

m reflectionless case: separable-kernel Marchenko system and hence explicit solutions

m closed-form, compact formulas for explicit solutions involving matrix exponentials

®m “unpacking” matrix exponentials yields explicit solutions in terms of elementary functions
m use (A, B, C) and (A, B, C) as input to the Marchenko system

m obtain the Marchenko solution [Mpm], , [Mam], , [Mnm], , and [Mnm],

m obtain g, and ry
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Explicit solutions using (A, B, C) and (A, B, C)

m construct £, £, T, and T via

gim e MAAT g AT v S AKBC(A) K, Ti= (A)KBCA
k=0 k=0

m construct U, and Uy via
Up:=1—-EA) " 2T R T (A", Up:=1-EA'TEA) 23T AT,

m construct [Mpm], , [Mam], , [Mam], , and [Mpm], via
Mam| = ~C(A)"(Un)~" E(A)~""B,
2

[
[Mam] = C AT (Tn)~" €A77 € (R)-"-m-2B,
[

‘nm]1 = C(A)"(Up)~1 E(A)~"27T & (A)™M B,

{"7’""’]2 = —CA"(U,)~' €A™ B.

m obtain gn and r, explicitly in terms of (A, B, C) and (A, B, C).
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