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Analogies between linear Vlasov-Poisson and
it Scattering theory

P. Degond : Spectral theory of the linearized Vlasov-Poisson equation. Trans.
Amer. Math. Soc. 294 (1986)

Expansibn (41) was the aim of this papér. However, expansion (40) presents
interesting analogies with Lax and Phillips’ scattering theory, which we detail in the
conclusion.

3.4. Comparison between Vlasov’s equation and scattering theory. One of the aims
of the scattering theory [2] is to obtain an asymptotic behaviour for the wave
equation outside a bounded obstacle. Although the total energy of the solution
remains constant, the dispersion towards infinity leads to a local decay of the L*
norm of the solution. This decay is well expressed by expansion (6).
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From models to
scattering

Vlasov-Poisson equations

e 1D-1V non linear Vlasov-Poisson equations for electrons, with given ion density

Ouf +vOf —EDF=0, t>0, x€T, veR,
OxE = pions(x) — g fdv, t>0, xeT.

with unknowns f(t,x,v) > 0 and E(t, x) = —0xp(t, x).
Note that f is constant along the characteristics

x=vandv=—E = f=0.

e Non homogeneous stationary states (¢ Degond 86’ or Mouhot-Villani 11")
+ linearization

v2
fo(x,v) = no(x)e™ 2, ng(x) = ePolx) (BGK/Sagdeev/. . ),
Eo(x) = —¢p(x), —@f(x)+2me0() = pigns(x),
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From models to
scattering

- Free transport : vOx + ¢5(x)dy

- Characteristic lines :
x" =vand v/ = gp(x)

2
- Invariants : %5 — o(x) = H.

Here g is one bump,

increases from 0 to x*, decreases

from x* to 1,
and by convention
®o > 0= ¢0o(0) = ¢o(1).
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From models to
scattering

e Linearize around this family of stationary solutions

{ f(t,x,v) = fo(x, v) +ev/fo(x, V)u(t, x, v) + O(?),
E(t,x) = Eg(x) + eF(t, x) + O(?).

® One gets the 1D-1V linearized Vlasov-Poisson equation

{ Btu—o—vaxu—Eo( )Ovu + F(u)v/fo(x,v) =0,
F(u) = =(8¢) 71 [ uy/fo(x, v)dv.

Field-particles coupling is provided by the operator

ur— —F(u)v/fo

which has no specific structure (neither symmetric nor anti-symmetric).
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Quadratic energy estimates

From models to

’ v2 | wolx)
scattering For convenience set M(x,v) = /fo(x,v) = e~ 4772 and reformulate as the
Vlasov-Ampeére equations
Otu + voxu — Egdyu = —vMF, t >0,
OtF = [puvMdv, t>0.

Now the right-hand side coupling terms is anti-symmetric.
One has the energy identity which already shows linear stability

d /I .
—(//u2dvdx+/F2dx>:0
dt

To be rigorous, define U = (u, F) € X := L%(T x R) x L3(T). One has
U'(t) = iHU(t)

H* = H,

where H = Hy + K (perturbation K compact in v, but not compact in x)

iHoz( 7‘/8*:{508” g ) and iKz( 1*f0v/\// 75M )

The Gauss law is propagated by the dynamics

U(0) {(u7 F)ye X| / uMdv + O«F = 0} C kerH.
R
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Classical scattering theory

From models to
scattering

- Reed-Simon Methods of modern mathematical physics : Il Scattering theory, 79"
- Kato Perturbation Theory for Linear Operators, 80'.
- Lax, Functional analysis, 2002.

Take X Hilbert space, and two closed self-adjoint operators Hf = Hp and K* = K
U'(t) = iHU(t) with H = Ho + K.

Typically Hp is unbounded but "simple” and K is "small”.

e Goal : for t — Fo0, compare U’(t) = et Uy with U/(t) = e"HUKUO.

Some possible tools
a) explicit calculation of the spectrum.
b) Mgller operators and trace class perturbation.

c) the Lipmann-Schwinger equation.
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Vlasov-Poisson is "almost” trace-class

From models to

scattering Take Ep := 0 (the homogeneous case ).
Oru + vOxu :—ve"/z/“F7 t >0,
O:F =z uve=V/4dv, t>0.

Lemma

Take n € N* and z = i3 with 8 € R* :
the operator T = (H — z)=" — (Hp — z) ™" is not trace class.

The Fourier decomposition is T = @ e** T with T} defined by
keZ

V2

ng( ‘:)k 8) and H¥ = v, | ive
ifvem T -dv | 0
The difference is finite rank, so Ty is trace-class individually.

2
Let u, = (ie_VT, k) be the zero eigenvector Hyu, =0

Ky N2 1
im (@2 ) —var — 7 2 8RS 2 — e,

[k| =00 [lukl|? |2|" =5 1Kl -

Then the full operator T is ”"almost” trace-class.
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From models to
scattering

Morrison integral operator= generalized Mol

ler

wave operator

Here Ey = o = 0 and u satisfies 0tu + vOxu + vME = 0 with the Gauss law.

Consider the integro-differential operator L (rewriting of Morrison G transform)

Lu= (=0« + q(v)) u(x,v) — vM(v)P.V./ u(x, w)M(w)dw

RW—V

where the function g is defined by
q(v) = P.V./ id M(w)?dw.
RW—V

Then h = Lu is a solution of free transport 9:h + vOxh = 0.

- Morrison, Hamiltonian Description of Vlasov Dynamics : Action-Angle Variables for the Continuous Spectrum, 2000
- Després, Symmetrization of Vlasov-Poisson equations, 2014.

In other words u(t) = L~1e~YOxtLyy, that is
et = | ~TeMt]  iHy = —voy.

Intertwinning property LH = HyL : generalized wave operators, Yafaev 01

Scattering structure of linearized Vlasov-Poisson equations (and more)

!
p. 9/ 27



Model

F
s o o Otu + vOxu — Egdyu = —vMF, t>0, (x,v)€lxR,
1D-1V non O:F = fR uvMdv, t>0, xel,
homogeneous.
with Eg(x) = —¢p(x) and g regular with any number of bumps.
v Lot
ot zone + e,
zone ¢
LTS -t %
\‘g. zone ;,-"

Characteristic lines %v2 + ¢o(x) = cst for a one bump electric field.
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Focus on
Vasov-Poisson
1D-1V non
homogeneous.

Technical tool : hiding the electric field

v2 (x)
e Remind M(x,v) = /fo(x,v) = e T+ %" Make the change of unknown

w(x,v,t) = u(x, v,t) +v(x)M(x, v)F(x,t),

where the weight v(x) is such that the total energy is preserved
Jrsr w2dvdx = Jrsr w?dvdx + [ F2.

e It holds for ~ solution of the Ricatti equation

YV (x) + 02y (x)2e90) =1, a=(2m)i,  x€T=1[0 1per.

Indeed
i, =l +2 [ wmF+ [ 2w
TxR TxR

= ||U||§v*2/TvF8XF+/Ta2,YZewo(X)F2

= lull, + [ (3 +arennt) p2
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e Then w satisfies an autonomous equation without Gauss, Poisson or Ampere

orw = iHw, H=iHo+IiK, IiK=iKi+iks,

where iHg = — (vOxw — Ep(x)dy ) is the free transport operator,
Focus on
Vasov-Poi:
104V non iKiw =~y (VM/ wMdv — M/ WVMdV)
homogeneous. R R

and

iKow =~yM wvMdv — (/ W'yM) Myv.
TxR TxR

e By construction Hg, K1 and K are self-adjoint in L2(T x R).

e [C; regularizes in v, not in x.

e [Cy is finite rank.

e One has Ker(K) = Span {an(x)¢¥n(v)}, an € L%(T) where (¢n)nen be the
n>2

orthonormal fIR wn(v)¢;(v)dv = dpm complete family of Hermite functions

Yo(v) = exp(7v2/4)/a, Pi(v) = vexp(7v2/4)/o¢, Pa(v) =...

e It is sufficient to show that 7 is trace class

T =(Ho—z) K1 (Ho — )71
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Integral operators

One has T*T = (Ho — 2) " K1(H3 + |2|?) " 1K1 (Ho — z) 71, where z = iB € iR*.

Focus on
Vasov-Poisson
1D-1V non

homogeneous. Lem ma
One has Ker(T*T) = Span, > {(Ho — z)antn, an € H(T)}.

Lemma

Let A € R*. The equation (7*7T)w = Aw for w # 0 is equivalent to two
decoupled integral equations

0 T3y e?0 T
(e )=2(1) @n#0o0. 8

where T1, T : L?(T) — L?(T) are integral operators

{ Tia(x) = o2 [ vo(v) E(Hz + |Z|2)‘l(a¢0)]] (x, v)dv, @)
Tab(x) = o2 [z ¥1(v) [(Hg + |2[*) 7 (ben)] (x, v)dv.

Moreover 71 and T3 are self adjoint, bounded, positive and injective.

Hint : take w = (Ho — 2) " (a(x)wo(v) + b(x)¥1(v)) € Ker(T*T)*.
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72

Focus on
Vasov-Poi
et Lemma
homogeneous. 1 .
Assume Ey € W*+1,°°(T) for s > 0. Then there exists Cs > 0 such that

17261l g2y < Csllbll s (r).-

Hint of the proof : with over-simplification, take Ey = 0 (and z = i). Then

V2 —_ V2
Tab(x) = C/ ve & [(7v26XX +1) ! ve_Tb] (x, v)dv
R

~ —_— V2
~ Tob(x) = C/ v2 |:(—V28xx +1) ! e_Tb] (x, v)dv
R

Clearly

~ p— V2

Do Tab(x) = C / (200 (—v20 +1) 7] e 7 b, v)av
R

50 || T2bl| pss2(ry < Csllbllps(r)-

One checks it is the same for operator T3.
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T

Vasov-Poisson

1D-1V non Under the same assumptions, there exists a constant Cs > 0 such that

homogeneous. ||7ia|| H5+4l @ < Gs || a” HS(T)-

Hint of the proof : same over-simplification (Eg = 0) and z = i. Then

> 2
Tra(x) = C/ e~ T [(—v28xx + 1)_1 efva} (x, v)dv
R

V2 2
— c/ e (Vi +1) [(—v@x—‘,-l)_l e’Tb} (x, v)dv
R

=g
Extra-regularity comes from compactness by integration.
(Golse-Sentis-Perthame-Lions).

V2
Take g = (—vdx+1)"te 7 b e [A(T x R),
and f = (vOx + 1)1 g € L2(T x R). So

vOxf =g — f € L*(T x R).
One gets
V2
/ e~ % f(x,v)dxdv € H%(']T).
R
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General case Eg # 0

Focus on
Vasov-Poisson
1D-1V non

homogeneous. The general case is g = (—vx + Eo(x)8, +1) "1 b € L2(T x R),
and f = (v8x — Eo(x)8y + 1)~ g € L3(T x R).

-Thanks to F. Golse.

S
° vOxf =g — f + 8y (Eo(x)f) € L3(T; H~1(R)).

With m =1, one gets

2
/ e” % f(x, v)dxdv € H%(']I').
R

- Diperna and Lions, Global weak solutions of Vlasov-Maxwell systems, 1989.

Then the proof of the trace class property goes on.
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Focus on
Vasov-Poisson
1D-1V non
homogeneous.

Final statements 1/2

Theorem (Jour. Scat. Theory 2020, D.)

Assume the electric potential is smooth g € W4+:°°(T) with
any number of bumps. Then the wave operators W4 (H, Hp) exist and are

complete. In particular one has the orthogonal decompositions between spaces
associated to absolute continuous, singular continuous and discrete parts of the
spectrum

L2(TXR):X§°€BX§°€BX§I’:X‘*CEBXSCEBXPP 3)

and X®¢ is in isometric bijection with A§<.

:
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Final statements 2/2

Focus on
Vasov-Poisson
1D-1V non
homogeneous.

Hyp. 1 : The time needed for particles to travel along characteristics is a

2
monotone function of the characteristic label : ;7,/%)" — ¢o(x) <0

Hyp 2 : The initial data has zero mean value along the characteristics curves of
the transport operator vy — e2Egd, (same as Faou-et-al 2021).

Theorem (Ann. IHP 2019, D.)

Rescale ¢§(x) = epo(x) which has just one bump. For 0 < € < €x, then
lime— oo || F(2)|lLo0 (1) = O.
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Other problems

Vlasov-Poisson-Ampeére nD

Now x € R? with d > 1.

Start from
Otf +v-Vxf —E(t,x)-Vyf =0, t>0,
OE=VA~IV. [ fudy, t>0,

with Gauss law/Poisson at initial time

{ —Ap = pions(x) — f fdv, t=0
t—

E(t,x) = —Vxp(t,x), 0.
Linearize
v 2
flx,v) = e~ 3 el
f(t,x,v) = fo(x,v) + ey/fo(x, v)u(t, x,v) + O(?),
E(t,x) = Eo(x) + eF(t,x) + O(e?).
It yields

Otu+v-Vxu—Eg-Vyu+F- v/l =0, t>0,
0:F = VATIV - [ uvy/frdv, t>0.

Scattering structure of linearized Vlasov-Poisson equations (and more)
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Set w = u + iv/fyLyp where

1

L=(-8) %[( D) rag(~0)7E] 7 (-a)k.

Other problems where the weight is ag(x) = [pa4 fo(x,v)dv = (27)2 : no(x) > 0.
Lemma
One has

2 2
||W||L2(Rd><]Rd) = ||u||L2(Rd><Rd + ||F||L2 Rd)
with the autonomous equation
otw +v-Vyxw — Eg - Vyw — iAw =0

where the symmetric operator A is defined by

Aw = \/EL(—A)—lv./\/vadv— \/EV.VL(—A)—l/\/Ede.
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Thin sprays :

Other problems

(a) Diesel engine fuel injector (b) Medical spray

Thick sprays :

Liquid sand From Particle Hopper

T Pressure Transducers | ‘ Pressure Transducers |
>\ o O ({ Stationary Bed K &

Moving Bed 31 mm
4—————%  Entrance Slit
57 mm
L LU
Saltation -

2 mm

Liquid velocity

/l Exit Slit

Suspension -
Incident Shock

Fig. 1. Sand flow regime in horizontal pipelines.

(c) Leporini at al (2019) (d) Daniel-Wagner (2022)
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Barotropic fluid+particules model a la Desvillettes

With C. Buet (CEA) and V. Fournet (PHD CEA)

Or(ap) + V - (apu) =0,

Ot(apu) + V- (apu @ u) + Vp = —m, [ Tfdv,
a=1—m, [ fdv,

mI' = —m,Vp — Dy(v — u),

Oef +v-Vif +V, - (Tf) = 0.

Other problems

Fournet-Buet-D. : Analog of Linear Landau Damping in a coupled Vlasov-Euler system for thick sprays
https://cnrs.hal.science/LJLL/hal-04265990v1.
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Linearization

Linearize around fo(v) = e=v?/2 (other profiles are possible) with
D, =0 me=1,up=0, g =cst, ...,

o1 :V~u1+V~f\/%g1vdv,
Oty = V11,
0:g1 = —v-Vxg1+ ViV V1.

In 1D for Fourier mode k, it is rewritten as

Other problems

U'(t) = iHU(t) with H = k

a5, F O

Prop : For k # 0, X?¢ = X.
So the acoustic energy tends to zero : 71(t)? + u1(t)? — 0 .
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An interesting collective phenomenon

Linearize the equations around a solution at rest (nothing moves) with a Gaussian
profile fo(v) = e=v*/2 for the particles

Initial conditions: ,

0=1 w=0, fi(x,v)=(1+ecos(kx))e™"/? e= 1073

Other problems
Orange curve x e5™@)* cos(Re(w)t), w(k) solution of £ S+ I f:/)k =

103 A~
1075 Y\ A )
107 4 [ \ \ 2%
109 4 L \fﬂ\[ -
— llulle2(t) num Y
10714 Jull=(t) theo |
[ 20 40 60 80 00 o
1073 4 S
1075 A f N A
1077 4 T ( ‘f\r\,-\
| | f\f\/-\
1079 4 | I f\r\ o
l 'A'a)
10-11 4 lle = eoll2(t) num | A,
lle = eoll2(t) theo
0 20 40 60 80 100 120
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Specialists immediately notice the similarity with
Linear Landau Damping in plasma physics

Other problems B First predicted by Landau[46'] for the

linearized Vlasov-Poisson system

1072
Ohf+v-Vif—E- -V, =0, 3 —EEZC:;Z
Vx-E=—[fdv 1024 ||
around maxwellian equilibrium 1074 \\An
2 | A
ﬂ)(v):e*V/Z ||“H\“"\‘\‘\\
107 i “\‘\

B [ andau showed the damping of the electric [ | | \\\
field 1o || Y‘““\\\\

IE(®)]|= © (MM cos(Re(w))) ,

107
with w(k) € C verifies a dispersion relation ’ \ ‘
1078
Ao
/ Bh() 4, _ e,
RV —w/k 0 10 20 30 40 50 60

time
B To show this, take the ansatz f(t,x, v) =

a(v)e™@te®™  E(t,x) = BeT e, Figure 1: Landau damping for (nonlinear)
Vlasov-Poisson
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Other problems

Rough explanation

Set all non important coefficients to 1 and annulate the friction D, = 0.

The kinetic equation in Thick Sprays writes

Of + v +TOF =0, T =—p.

The Vlasov-Poisson equation in plasma physics writes

O:f + vOxf + EOf =0, E = —0x¢.

This similarity is the key ingredient.
It explains why the mathematical developments for the derivation of the
dispersion relation follow the same route.
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Other problems

Conclusion

e Kinetic equations coupled with macroscopic equations
(Poisson-Ampere-Euler-. . .) in a non dissipative manner can be analyzed with
classical Scattering Theory.

@ It offers a simple explanation of Linear Landau Damping around
homogeneous profiles which can now be seen as an exercice in Scattering
Theory.

@ It offers possibilities to explore Linear Landau Damping around non
homogeneous profiles.

@ There is an extension to magnetized Vlasov-Poisson-Ampére equations
(Weder+Charles+Rege+D.).

e The non linear case (Mouhot-Villani-. ..) seems difficult to analyze within
classical Scattering Theory.

e Same tools can be used for Thick Sprays (neutral particles + Euler equations).
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