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On many curved spacetimes one can define four natural
Green functions of the Klein-Gordon equation:

• the retarded or forward propagator G∨,

• the advanced or backward propagator G∧,

• the (distinguished) Feynman propagator GF,

• the (distinguished) antiFeynman propagator GF.

One also introduces various bisolutions of the Klein-Gordon equation:
positive/negative frequency 2-point functions G(±) and the
Pauli-Jordan propagator GPJ.

They are key ingredients of perturbative Quantum Field Theory.
I will discuss them from the point of view of operator theory.



I. FLAT SPACETIME.

Consider first the Klein-Gordon equation on the flat Minkowski
space R1,d−1:

(−� + m2)ψ = 0. (1)

We will say that G•(x, y) is a Green function of (1) if

(−�x + m2)G•(x, y) = (−�y + m2)G•(x, y) = δ(x− y).

We will say that G•(x, y) is a bisolution of (1) if

(−�x + m2)G•(x, y) = (−�y + m2)G•(x, y) = 0.



There are four Green functions invariant wrt the restricted Poincaré
group:

• the forward/backward propagator

G∨/∧(x, y) :=
1

(2π)4

∫
e−i(x−y)·p

p2 + m2 ± i0 sgn p0
dp,

• the Feynman/anti-Feynman propagator

GF/F(x, y) :=
1

(2π)4

∫
e−i(x−y)·p

p2 + m2 ∓ i0
dp.

G∨ and G∧ are related to the classical Cauchy problem, because

their support is in the forward, resp. backward cone. GF and GF

are used in QFT to compute Feynman diagrams.

They satisfy the identity GF + GF = G∨ + G∧.



Here are the most important bisolutions:

• the Pauli–Jordan propagator or commutator function

GPJ(x, y) := G∨ −G∧,

• the positive frequency or Wightman 2-point function

G(+)(x, y) :=
1

i
(GF −G∧) =

1

i
(−GF + G∨),

• the negative frequency or anti-Wightman 2-point function

G(−)(x, y) :=
1

i
(−GF + G∧) =

1

i
(GF −G∨).

Jointly, these Green functions and bisolutions, well motivated by
QFT, will be informally called propagators.



After quantization, we obtain an operator–valued distribution
R1,d−1 3 x 7→ ψ̂∗(x) = ψ̂(x)∗ satisfying the Klein-Gordon equation
and commutation relations

(−� + m2)ψ̂∗(x) = 0,

[ψ̂(x), ψ̂∗(y)] = −iGPJ(x, y).

We also have a state (Ω| · Ω) such that

(Ω | ψ̂(x)ψ̂∗(y)Ω) = G(+)(x, y),

(Ω | ψ̂∗(x)ψ̂(y)Ω) = G(−)(x, y),(
Ω
∣∣T(ψ̂(x)ψ̂∗(y)

)
Ω
)

= −iGF(x, y),(
Ω
∣∣T(ψ̂(x)ψ̂∗(y)

)
Ω
)

= iGF(x, y).



There are two distinct operator-theoretic interpretations of propa-
gators. The first is based on the Hilbert space L2(R1,3):

(1) The Klein-Gordon operator K = −� + m2 is essentially self-
adjoint on C∞c (R1,3) in the sense of L2(R1,3).

(2) For s > 1
2, as an operator 〈t〉−sL2(R1,3) → 〈t〉sL2(R1,3), the

Feynman propagator is the boundary value of the resolvent of the
Klein-Gordon operator:

s-lim
ε↘0

(K ∓ iε)−1 = GF/F.

Here 〈t〉 denotes the so-called “Japanese bracket”

〈t〉 :=
√

1 + t2.



The second operator-theoretic approach is based on the Krein space

W := (m2 −∆)−
1
4L2(R3)⊕ (m2 −∆)

1
4L2(R3),

describing Cauchy data. More important than its scalar product is
the indefinite Klein-Gordon charge form

(w|v)KG := (w1|v2) + (w2|v1),

Krein space is a space with the topology of a Hilbert space and a
distinguished Hermitian form (·|Q·) such that there exist S• where
S2
• = 1l and

(v|w)• = (v|QS•w) = (S•v|Qw)

is a scalar product compatible with the topology.



Set ζ
↔
∂ ξ = ζ∂ξ − ∂ζξ. Note that for ζ, ξ ∈ W , we have

∂µ(ζ
↔
∂
µ
ξ) = 0. The Klein-Gordon charge is the integral of the

above current over any Cauchy surface, e.g.:

(ζ|ξ)KG =

∫
ζ(t, ~x)

↔
∂

0
ζ(t, ~x) d~x.

For a bisolution G•(x, y), a linear operator C• onW is defined by∫
G•(x, t, ~y)

↔
∂

0
ζ(t, ~y) d~y

G• is then called the Klein-Gordon kernel of C•.
Example: GPJ(x, y) is the Klein-Gordon kernel of identity.



The Klein-Gordon equation can be rewritten as a 1st order evolution
equation preserving the scalar product, and more importantly, the
charge form: (

∂t + iB
)
w = 0,

B :=

[
0 1l

m2 −∆ 0

]
, w =

[
w1
w2

]
:=

[
u

i∂tu

]
.

Introduce the projections onto positive/negative frequency solu-

tions (or particles/antiparticles): Π(±) := 1lR+
(±B). ThenG(±)(x, y)

are the Klein-Gordon kernels of ±Π(±).



II. CURVED SPACETIMES.

Consider a curved spacetime M with the metric tensor gµν. Define
the d’Alembertian and the Klein-Gordon operator

−� := −|g|−
1
2∂µ|g|

1
2gµν∂ν, K := −� + m2.

(One could also replace the term m2 with an x-dependent scalar po-
tential). How to generalize the well-known propagators from R1,d−1

to generic spacetimes?
We will restrict ourselves to globally hyperbolic spacetimes, that

is Lorentzian manifolds possessing Cauchy surfaces and with time
flowing forever.



As is well-known, ifM is globally hyperbolic, then the forward/backward
propagators have natural generalizations. Namely, there exist unique
distributions G∨ and G∧ such that

(−� + m2)ζ∨/∧ = f,

supp ζ∨/∧ ⊂ future/past shadow of supp f

is uniquely solved by

ζ∨/∧(x) :=

∫
G∨/∧(x, y)f (y)|g|

1
2(y) dy.



Note that −� is obviously Hermitian (symmetric) on C∞c (M) in

the sense of the Hilbert space L2(M, |g|
1
2). Assume it is essentially

self-adjoint. Then its resolvent (−� + m2)−1 is well defined for
complex m2. For real m2, not eigenvalues of �, we define the
operator-theoretic Feynman/antiFeynman propagator as the integral
kernel of

GF
op := lim

ε↘0

1

(−� + m2 − iε)
, GF

op := lim
ε↘0

1

(−� + m2 + iε)
.

I believe that the following argument justifies this definition. Here
is an elementary fact about Fresnel integrals (with x ∈ R):∫

e±i(c2x
2+Jx) dx∫

e±ic2x
2

dx
= exp

(
∓ iJ2

2(c± i0)

)
.



If we use path integrals, the generating function formally is

Z(J) :=

∫
eiS(ψ,ψ∗)+iψJ∗+iψ∗JDψDψ∗∫

eiS(ψ,ψ∗)DψDψ∗
.

If the action is quadratic

S(ψ, ψ∗) =−
∫ (

∂µψ
∗(x)∂µψ(x) + m2ψ∗(x)ψ(x)

)√
|g|(x) dx

=−
(
ψ|(−� + m2)ψ

)
,

then the path integral can be rigorously defined as

Z(J) = exp
(

i

∫ ∫
J(x)GF

op(x, y)J(y)
√
|g|(x)

√
|g|(y) dx dy

)
= exp i

(
J |(−� + m2 − i0)−1J

)
.



Essential self-adjointness of the d’Alembertian is easy in some spe-
cial cases:

• stationary spacetimes;

• Friedmann-Lemaitre-Robertson-Walker (FLRW) spacetimes;

• 1+0-dimensional spacetimes;

• deSitter and (the universal covering of) anti-deSitter spacetime,
(which follows from general properties of symmetric spaces).

On a class of asymptotically Minkowskian spacetimes essential self-
adjointness was recently proven by Vasy and Nakamura-Taira. Essen-
tial self-adjointness is destroyed by (space-like or time-like) bound-
aries—this can be sometimes repaired by boundary conditions.



There exists also a different definition of Feynman propagators
based on a time-ordered expectation of quantum fields in a state.
Let ψ̂(x) be the quantum field satisfying

[ψ̂(x), ψ̂∗(y)] = −iGPJ(x, y).

Let Ωα be any Fock vacuum (in other words, pure quasifree state).
Set

G
(+)
α = (Ωα|ψ̂(x)ψ̂∗(y)Ωα), G

(−)
α = (Ωα|ψ̂∗(x)ψ̂(y)Ωα),

−iGF
α = (Ωα|T(ψ̂(x)ψ̂∗(y))Ωα), iGF

α = (Ωα|T(ψ̂(x)ψ̂∗(y))Ωα).

We have GF
α(x, y) + GF

α(x, y) = G∨(x, y) + G∧(x, y).

We say that Ωα is Hadamard if the singularities of G
(+)
α are similar

to those on the Minkowski space.



It useful to extend the above definitions of 2-point functions, Feyn-
man and antiFeynman propagators to pairs of vacua Ωα and Ωβ:

G
(+)
αβ (x, y) =

(Ωα|ψ̂(x)ψ̂∗(y)Ωβ)

(Ωα|Ωβ)
,

G
(−)
αβ (x, y) =

(Ωα|ψ̂∗(x)ψ̂(y)Ωβ)

(Ωα|Ωβ)
,

−iGF
αβ(x, y) =

(Ωα|T(ψ̂(x)ψ̂∗(y))Ωβ)

(Ωα|Ωβ)
,

iGF
αβ(x, y) =

(Ωα|T(ψ̂(x)ψ̂∗(y))Ωβ)

(Ωα|Ωβ)
.



Note that they satisfy

(−�x + m2)G
(+)/(−)
αβ (x, y) = 0,

(−�x + m2)G
F/F
αβ (x, y) = δ(x, y),

i(G
(+)
αβ −G

(−)
αβ ) = GPJ = G∨ −G∧,

GF
αβ + GF

αβ = G∨ + G∧,

G
(+)
αβ (x, y) = G

(−)
βα (y, x), GF

αβ(x, y) = GF
βα(y, x).

G
(+)
αβ , G

(−)
βα , GF

αβ, GF
βα can be defined in a purely operator-theoretic

way, using the Krein space of Cauchy data—then we neither have to
divide by zero, nor invoke QFT!



Suppose that the Klein-Gordon equation is stationary (does not
depend on time) and stable (the classical Hamiltonian is positive).
Then there is a distinguished vacuum Ω, given by the space of posi-
tive frequency modes of the generator of dynamics. It is then easy to
show (D. Siemssen and JD) that −�+m2 is essentially self-adjoint
and the operator-theoretic Feynman propagator corresponds to Ω:

−iGF
op = (Ω|T(ψ̂(x)ψ̂∗(y))Ω),

iGF
op = (Ω|T(ψ̂(x)ψ̂∗(y))Ω).



If M is asymptotically stationary and stable in the future and past
then we have two natural states: the in-vacuum Ω− and the
out-vacuum Ω+. As proven by Gérard and Wrochna, they are Hadamard

Introduce the out-in Feynman propagator and the in-out
antiFeynman propagator

−iGF
+−(x, y) =

(
Ω+|T

(
ψ̂(x)ψ̂∗(y)

)
Ω−
)(

Ω+|Ω−
) ,

iGF
−+(x, y) =

(
Ω−|T

(
ψ̂(x)ψ̂∗(y)

)
Ω+
)(

Ω−|Ω+
) .

By the Wick Theorem, they appear in the evaluation of Feynman
diagrams for the scattering operator resp. its inverse.



As proven by (D.Siemssen and JD) in great generality, (and also
by Gérard and Wrochna for asymptotically Minkowski spacetimes)

GF
+− and GF

−+ are well defined.
One can heuristically derive, and under some technical assumptions

prove rigorously (Vasy and Nakamura–Taira) that they coincide with
the operator-theoretic propagators:

GF
op =GF

+−,

GF
op =GF

−+.



Assume now that M is globally hyperbolic and −� is essentially
self-adjoint. (If not, choose a self-adjoint extension).

We will say that −� + m2 is special if

supp
(
GF

op(·, y) + GF
op(·, y)

)
⊂ causal shadow of{y}.

Then we by splitting the above distribution into the future and past
lightcones we expect the identity involving the forward and backward
propagators:

GF
op(x, y) + GF

op(x, y) = G∨(x, y) + G∧(x, y).



Special Klein-Gordon equations are superconvenient! There exist
good techniques to compute the Feynman and antiFeynman propaga-
tors (because they are defined in the framework of operator theory).
The forward/backward propagators can then be computed as

G∨/∧(x, y) := θ(±x0 ∓ y0)
(
GF

op(x, y) + GF
op(x, y)

)
.

As usual, we then set GPJ := G∨ − G∧. More interestingly, we
have a natural candidate for the two-point function of a distinguished
state:

(Ω | ψ̂(x)ψ̂∗(y)Ω) =
1

i
(GF

op −G∧) =
1

i
(−GF

op + G∨),

(Ω | ψ̂∗(x)ψ̂(y)Ω) =
1

i
(−GF

op + G∧) =
1

i
(GF

op −G∨).



Recall that for any state α

GF
α(x, y) + GF

α(x, y) = G∨(x, y) + G∧(x, y).

Hence if
Ω− = Ω+,

then −� + m2 is special.
This is in particular true if M is stationary and stable—hence they

are special.



III. EXAMPLES OF SPACETIMES AND THEIR PROPAGATORS

Stationary Klein-Gordon equations are especially easy, as we dis-
cussed above. This includes the Minkowski space. They are special
if they are stable, that is the Hamiltonian is positive definite (which
corresponds to m2 ≥ 0).

For tachyonic stationary Klein-Gordon equations, that is with m2 <
0, we can also define all four Green’s functions. However they are
not special! (And, of course, we do not have a physical state).



Consider a 1 + 0 dimensional spacetime. In view of applications to
FLRW spacetimes, assume that it is perturbed by a time-dependent
potential. Thus the Klein-Gordon operator has the form of a
1-dimensional Schrödinger operator

K = −H + m2, H := −∂2
t + V (t).

It is special if H is reflectionless at the energy m2.
For instance, the symmetric Scarf Hamiltonian

−∂2
t −

α2 − 1
4

cosh2 t

is reflectionless at all energies for α ∈ Z + 1
2.



The deSitter space is defined as the submanifold of the d + 1-
dimensional Minkowski ambient space:

dSd := {X ∈ Rd+1 | −X2
0 + X2

1 + · · · + X2
d = 1}.

One can look for the Feynman propagator by solving the equation

(−�x + m2)GF(x, y) = δ(x− y),

and requiring that GF(x, y) = GF(w), where w = x·y is the product
of the vectors in the ambient space. We obtain the Gegenbauer
equation(

(1− w2)∂2
w − dw∂w − (d−1

2 )2 + m2
)
GF(w) = 0.

We demand the singularities of GF are similar to those of the Feyn-
man propagator on the Minkowski space.



Figure 2: V ± := {Z(x, x′) > 1 | t(x, x′) ≷ 0}, A± := {Z(x, x′) < −1 | t(xA, x′) ≶ 0} and S := {|Z(x, x′)| < 1}.

•
x

•
xA

V +

V − A−

A+

SS

t→∞

t→ −∞ tA →∞

tA → −∞



Assuming m > d−1
2 and setting ν :=

√
m2 − (d−1

2 )2 we obtain

G
F/F
E (w) = ±i

Γ(d−1
2 + iν)Γ(d−1

2 − iν)

(4π)
d
2

Sd
2−1,iν

(
− w ± i0

)
.

Above, Sα,ν is the Gegenbauer function regular at 1 and equal
1

Γ(α+1)
there. It satisfies

GF
E + GF

E = G∨ + G∧.

We can compute forward/backward propagators, and the distin-
guished two-point function, called the Euclidean state (because it
is obtained by the Wick rotation from the Euclidean sphere). It is
the unique deSitter invariant Hadamard state.



The d’Alembertian on C∞c (dSd) is essentialy self-adjoint and thus
one can define the operator-theoretic Feynman and antiFeynman
propagator. However, it is different from the Euclidean one:

GF
E 6= GF

op, GF
E 6= GF

op.

Note that the deSitter space is quite pathological—in particular it is
not asymptotically stationary, and the Euclidean state is neither the
in-state nor the out-state.



There exists a family of deSitter invariant states parametrized by a complex
parameter, called alpha-vacua. Among them there is the Euclidean state, an
in-state and an out-state. The out-in Feynman propagators coincides with the
operator-theoretic Feynman propagators and is given by

GF
+−(w) =

Γ(d−1
2 + iν)

22+ıν(2π)
d−1

2 sinhπν

(
Zd

2−1,iν

(
− w − i0

)
− Zd

2−1,iν

(
− w + i0

))
, odd d;

GF
+−(w) =

Γ(d−1
2 + iν)

22+ıν(2π)
d−1

2 coshπν

(
Zd

2−1,iν

(
− w − i0

)
+ Zd

2−1,iν

(
− w + i0

))
, even d.

where Zα,λ is the Gegenbauer function behaving as w−
1
2−α−λ

Γ(λ+1) at w → +∞.

In odd dimensions and with m2 > (d−1
2 )2, the deSitter space is special and the

out and in vacua coincide. This is not the case in even dimensions!



There is an alternative approach to the deSitter space based on global coordinates

X0 = sinh t, Xi = cosh tx̂i, x̂ ∈ Sd−1

yielding the metric − dt2 + cosh2 t dΩ2. This has a FLRW form and yields the
Schrödinger operator

−∂2
t −

(
d−2

2

)2 − 1
4 −∆Sd−1

cosh2 t
+
(
d−1

2

)2
.

The spectrum of −∆Sd−1 is {l(l+ d− 2) : l = 0, 1, 2, . . . }, hence we obtain the
symmetric Scarf potential with α = d−2

2 + l. Thus all modes are reflectionless iff
d is odd. Consequently, all modes are special iff d is odd, and they are not if d is
even.



The Anti-deSitter space is defined as

AdSd := {(X, Y ) ∈ R2 × Rd−1 : −X2
1 −X2

2 + Y 2
1 + · · · + Y 2

d−1 = −1}.
It is stationary, however has timelike loops. Introduce the coordinates

X1 =
cos t

cos ρ
, X2 =

sin t

cos ρ
, Yi = tan ρŷi;

with the metric
1

cos2 ρ
(− dt2 + dρ2 + sin2 ρ dΩ2).

where t ∈]−π, π]. By taking the universal covering of the Anti-deSitter space we
remove timelike loops. In coordinates this means t ∈ R,

The d’Alembertian is essentially self-adjoint. We again set w := x · y from the

ambient space. For m2 > −(d−1
2 )2, with ν :=

√
(d−1

2 )2 + m2, we obtain on Vn

GF/F
op (x, x′) =± i

√
πΓ(d−1

2 + ν)
√

2(2π)
d
22ν

e∓i|n|(d−1
2 +ν)πZd

2−1,ν

(
− (−1)nw ± (−1)ni0s

)
,

where s = 0 on V2n and s = (−1)n on V2n−1 ∪ V−2n+1.



Figure 3: (a) Proper anti-deSitter space, (b) Universal cover of anti-deSitter space.
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In the following, it will be useful to know some properties of the trigonometric
Pöschl-Teller Hamiltonian:

H := −∂2
ρ +

α2 − 1
4

sin2 ρ
+
β2 − 1

4

cos2 ρ
.

This Hamiltonian, as an operator on L2[0, π2 ], is essentially self-adjoint iff α2 ≥ 1
and β2 ≥ 1, and has a positive Friedrichs extension if α2 ≥ 0 and β2 ≥ 0. If
α2 < 0 or β2 < 0, then all its extensions are unbounded from below.



The Anti-deSitter space, even after taking its universal covering, is still not
globally hyperbolic: it has trajectories that escape to infinity in finite time.

Consider now the Klein-Gordon operator on Anti-deSitter:

(tan ρ)
d−2

2 (−� + m2)(tan ρ)−
d−2

2

= cos2 ρ
(
∂2
t − ∂2

ρ +

(
d−3

2

)2 − 1
4 −∆Sd−2

sin2 ρ
+

(
d−1

2 )2 − 1
4 + m2

cos2 ρ

)
= cos2 ρ

(
∂2
t + H

)
,

where H is the trigonometric Pöschl-Teller Hamiltonian. ρ = 0 is a coordinate
singularity. ρ = π

2 is the spatial infinity, where classical particles may escape.

Following Wald-Ishibashi, we note that H is self-adjoint for m2 ≥ 1 − (d−1
2 )2.

For m2 ≥ −(d−1
2 )2, we need to take the Friedrichs extension of H. In all these

cases the Anti-deSitter space is special! Only for m2 < −(d−1
2 )2 we do not have

distinguished forward and backward propagators (and of course the specialty breaks
down).



Thank you for your attention


