On damping a control system of arbitrary order with global aftereffect on a temporal tree

Sergey Buterin

Saratov State University, Saratov, Russia

buterinsa@sgu.ru

Online Conference Analysis and Mathematical Physics (AMP 2024) https://www.iimas.unam.mx/amp2024/ August 14, 2024

The work was supported by Russian Science Foundation (Grant Nº 22-21-00509)

[1] Montrol E. Quantum theory on a network, J. Math. Phys. 11 (1970) no. 2, 635–648.

[2] Nicaise S. Some results on spectral theory over networks, applied to nerve impulse transmission, Vol. 1771, Lecture Notes in Mathematics, Springer, Berlin, 1985, 532–541.

[3] Kuchment P. Graph models for waves in thin structures, Waves in Random Media 12 (2002) no. 4, R1–R24.

[4] Pokornyi Yu.V., Penkin O.M., Pryadiev V.L., Borovskikh A.V., Lazarev K.P. and Shabrov S.A. *Differential Equations on Geometrical Graphs*, Fizmatlit, Moscow, 2005.

[5] Berkolaiko G., Kuchment P. Introduction to Quantum Graphs, AMS, Providence, 2013.

[6] Yurko V.A. Inverse spectral problems for differential operators on spatial networks, Russian Math. Surveys 71 (2016) no. 3, 539–584.

[7] Bondarenko N.P. Spectral data characterization for the Sturm-Liouville operator on the star-shaped graph, Anal. Math. Phys. 10 (2020) 83.

[8] Kurasov P. Spectral Geometry on Graphs, Birkhäuser, Berlin, 2024.

$$-y_j''(x) + q_j(x)y_j(x) = \lambda y_j(x), \quad 0 < x < 1, \quad j = \overline{1, m}, \quad (1)$$

where $q_j(x)$ are integrable functions,

$$y_1(1) = y_2(1) = \dots = y_m(1) \quad \text{(continuity conditions)}, \qquad (2)$$
$$y'_1(1) + y'_2(1) + \dots + y'_m(1) = 0 \quad \text{(Kirchhoff's condition)}, \qquad (3)$$
$$y_j(0) = 0, \quad j = \overline{1, m}. \qquad (4)$$

Our goal was to define an operator with constant delay of the form

$$-y''(x) + q(x)y(x-a), \quad 0 < x < 1, \tag{5}$$

on graphs.

Various operators with deviating argument on an interval have been actively studied starting from the middle of the last century in connection with numerous applications. For example, see the monographs:

[9] Myshkis A.D. Linear Differential Equations with a Delay Argument, Nauka, Moscow, 1951.

[10] Bellman R. and Cooke K.L. *Differential-Difference Equations*, The RAND Corp. R-374-PR, 1963.

[11] Norkin S.B. Second Order Differential Equations with a Delay Argument, Nauka, Moscow, 1965.

[12] Hale J. Theory of Functional-Differential Equations, Springer-Verlag, NewYork, 1977.

[13] Skubachevskii A.L. *Elliptic Functional Differential Equations and Applications*, Birkhäuser, Basel, 1997.

Locally nonlocal case [14]

[14] Wang F. and Yang C.-F. Traces for Sturm-Liouville operators with constant delays on a star graph, Results Math. (2021) 76:220.

$$y_{1}(1) = y_{2}(1) = \dots = y_{m}(1), \quad y_{1}'(1) + y_{2}'(1) + \dots + y_{m}'(1) = 0, \quad (4)$$

Globally nonlocal case

$$-y''(x) + q(x)y(x-a) = \lambda y(x), \quad 0 < x < 2, \quad y(0) = y(2) = 0, \quad (8)$$
$$a \in (0,2), \qquad q(x) = 0 \text{ a.e. on } (0,a). \quad (9)$$

For $x \in (0, 1)$, we denote: $y_1(x) := y(x), y_2(x) := y(x+1), q_1(x) := q(x), q_2(x) := q(x+1).$ $-y_{i}''(x) + q_{i}(x)y_{i}(x-a) = \lambda y_{i}(x), \quad 0 < x < 1, \quad j = 1, 2.$ (10) $y_1(1) = y_2(0), \quad y'_1(1) = y'_2(0),$ (11) $y_1(0) = y_2(1) = 0,$ (12) $y_2(x-a) := y_1(x-a+1), \quad \max\{0, a-1\} < x < \min\{a, 1\}, \quad (13)$ $q_1(x) = 0, x \in (0, \min\{a, 1\}); q_2(x) = 0, x \in (0, \max\{0, a-1\}).$ (14)

[15] Buterin S.A. Functional-differential operators on geometrical graphs with global delay and inverse spectral problems, Res. Math. (2023) 78:79. Let $a \in (0, 2)$. The corresponding BVP has the form: $-y_{i}''(x) + q_{i}(x)y_{i}(x-a) = \lambda y_{i}(x), \quad 0 < x < 1, \quad j = \overline{1, m}, \quad (15)$ $y_{i}(x-a) = y_{1}(x-a+1), \quad j = \overline{2,m},$ (16)for $x \in (\max\{0, a-1\}, \min\{a, 1\}),$ $y_1(1) = y_2(0) = \ldots = y_m(0), \quad y'_1(1) = y'_2(0) + \ldots + y'_m(0),$ (17) $y_1(0) = 0, \quad y_j(1) = 0, \quad j = \overline{2, m}.$ (18)

Also assume that

$$q_1(x) = 0 \text{ a.e. on } (0, \min\{a, 1\}),$$

$$q_j(x) = 0 \text{ a.e. on } (0, \max\{0, a - 1\}), \quad j = \overline{2, m}.$$

$$\left. \right\}$$
(19)

1

[16] Buterin S. On recovering St.-L.-type operators with global delay on graphs from two spectra, Mathematics 11 (2023) no.12, art. no. 2688.

[17] Krasovskii N.N. Control Theory of Motion, Nauka, Moscow, 1968

[18] Skubachevskii A.L. On the problem of damping a control system with after effect, Russian Acad. Sci. Dokl. Math. 49 (1994) 282–286.

[13] Skubachevskii A.L. *Elliptic Functional Differential Equations and Applications*, Birkhäuser, Basel, 1997.

[19] Adkhamova A.S. and Skubachevskii A.L. *Damping problem for a neutral control system with delay*, Dokl. Math. 101 (2020) no. 1, 68–70.

[20] Skubachevskii A.L. and Ivanov N.O. Generalized solutions of the second boundary-value problem for differential-difference equations with variable coefficients on intervals of noninteger length, Math. Notes 111 (2022) no. 6, 913–924.

Skubachevskii [18] (see also [13]) considered the following control system:

$$y'(t) + ay'(t-\tau) + by(t) + cy(t-\tau) = u(t), \quad t > 0.$$
 (20)

where $a, b, c \in \mathbb{R}$ and $\tau > 0$ are fixed, u(t) is a control function,

$$y(t) = \varphi(t) \in W_2^1[-\tau, 0], \quad t \in [-\tau, 0],$$
 (21)

while $\varphi(t)$ is a known real-valued function.

Problem: Bring (20) and (21) into the state y(t) = 0 for $t \ge T > 2\tau$. It is sufficient to find a control function $u(t) \in L_2(0,T)$ such that

$$y(t) = 0, \quad t \in [T - \tau, T].$$
 (22)

Thus, there arises the **variational problem** for energy functional

$$J(y) := \int_0^T \left(y'(t) + ay'(t-\tau) + by(t) + cy(t-\tau) \right)^2 dt \to \min \quad (23)$$

under the conditions (21) and (22).

Theorem 1. [18] A function $y(t) \in W_2^1[-\tau, T]$ is a solution of the variational problem (21)–(23) if and only if y(t) solves the boundary value problem for the equation

$$\left((1+a^2)y'(t) + ay'(t-\tau) + ay'(t+\tau)\right)' + (c-ab)(y'(t-\tau) - y'(t+\tau))$$

$$= (b^2 + c^2)y(t) + bc(y(t - \tau) + y(t + \tau)), \quad 0 < t < T - \tau, \quad (24)$$

under the conditions (21) and (22).

The solution is understood in the generalized sense:

$$(1+a^2)y'(t) + ay'(t-\tau) + ay'(t+\tau) \in W_2^1[0, T-\tau].$$
(25)

Theorem 2. [18] For any function $\varphi(t) \in W_2^1[-\tau, 0]$, there exists a unique generalized solution $y(t) \in W_2^1[-\tau, T]$, and

$$\|y\|_{W_2^1[-\tau,T]} \le c \|\varphi\|_{W_2^1[-\tau,0]},$$

where c does not depend on $\varphi(t)$.

Up to $t = T_1$, our control system is described by the equation $(\tau < T_1)$ $\ell_1 y(t) := y_1'(t) + b_1 y_1(t) + c_1 y_1(t - \tau) = u_1(t), \quad 0 < t < T_1,$ (26)where $y_1(t)$ is defined on the edge $e_1 = [v_0, v_1]$ and has the prehistory $y_1(t) = \varphi(t) \in W_2^1[-\tau, 0], \quad t \in [-\tau, 0].$ (27)At v_1 , this system splits into m-1 independent processes described by $\ell_j y(t) := y'_j(t) + b_j y_j(t) + c_j y_j(t - \tau) = u_j(t), \quad t > 0, \quad j = \overline{2, m}, \quad (28)$ but having a common history determined by (26), (27) and the relations $y_{j}(t) = y_{1}(t + T_{1}), \quad t \in (-\tau, 0), \quad j = \overline{2, m}.$ (29)

Conditions (29) mean that the delay propagates through the internal vertex v_1 . Besides (29), we impose the continuity conditions at v_1 :

$$y_j(0) = y_1(T_1), \quad j = \overline{2, m}.$$
 (30)

Fix $T_j > \tau$ for $j = \overline{2, m}$. Then damping the control system (26)–(30) would mean that $y_j(t)$ becomes zero as soon as $t \ge T_j$ for $j = \overline{2, m}$. For ensuring this, it is sufficient to find $u_j(t)$, $j = \overline{1, m}$, that lead to

$$y_j(t) = 0, \quad t \in [T_j - \tau, T_j], \quad j = \overline{2, m}.$$
(31)

It can be interpreted as if all the "arisen" processes are just possible scenarios of one and the same process after the time point $t = T_1$.

In other words, at $t = T_1$, there appear m - 1 different scenarios of the further process flow determined, in turn, by different pairs of the coefficients b_j and c_j in equations (28).

Before $t = T_1$, there is no information about which scenario will be really fulfilled. Thus, the control functions $u_j(t)$, $j = \overline{1, m}$, should be chosen in such a way that the system will be damped surely at each possible outcome, i.e. on all the edges emanating from the vertex v_1 . Since the required controls $u_j(t)$ are far not unique, it is natural to try reducing the corresponding efforts $||u_j||_{L_2(0,T_j)}$ as much as possible. When constructing the corresponding energy functional it is reasonable, as we demonstrate below, to regulate the entrance of each $||u_j||^2_{L_2(0,T_j)}$ by choosing a certain positive weight α_j .

Thus, we arrive at the **variational problem**

$$\sum_{j=1}^{m} \alpha_j \int_0^{T_j} (\ell_j y(t))^2 dt \to \min$$
(32)

under the conditions (27) and (29)–(31), where $\alpha_j > 0$, $j = \overline{1, m}$.

Th. 3. Functions $y_1(t) \in W_2^1[-\tau, T_1], y_j(t) \in W_2^1[0, T_j], j = \overline{2, m}$, form a solution of the variational problem (27), (29)–(32) if and only if they possess additional smoothness: $y_1(t) \in W_2^2[0, T_1], y_j(t) \in W_2^2[0, T_j - \tau],$ $j = \overline{2, m}$, and solve the boundary value problem \mathcal{B} (see the next slide). The problem \mathcal{B} consists of the equations

$$\alpha_1(\ell_1 y)'(t) = \alpha_1 b_1 \ell_1 y(t) + \begin{cases} \alpha_1 c_1 \ell_1 y(t+\tau), & 0 < t < T_1 - \tau, \\ \sum_{\nu=2}^m \alpha_\nu c_\nu \ell_\nu y(t+\tau - T_1), & T_1 - \tau < t < T_1, \end{cases}$$

$$(\ell_j y)'(t) = b_j \ell_j y(t) + c_j \ell_j y_j(t+\tau), \quad 0 < t < T_j - \tau, \quad j = \overline{2, m},$$

along with all standing conditions (27), (29)-(31) as well as the new one

$$\alpha_1 y_1'(T_1) + \beta y_1(T_1) + \gamma y_1(T_1 - \tau) = \sum_{j=2}^m \alpha_j y_j'(0), \qquad (33)$$

where

$$\beta := \alpha_1 b_1 - \sum_{j=2}^m \alpha_j b_j, \quad \gamma := \alpha_1 c_1 - \sum_{j=2}^m \alpha_j c_j.$$
(34)

Theorem 4. The boundary value problem \mathcal{B} has a unique solution. Moreover, the solution satisfies the estimate

$$\|y_1\|_{W_2^1[0,T_1]} + \sum_{j=2}^m \|y_j\|_{W_2^1[0,T_j-\tau]} \le C \|\varphi\|_{W_2^1[-\tau,0]},$$
(35)

where C is independent of $\varphi(t)$.

In [22], Theorems 3 and 4 were generalized to a control system of arbitrary order and neutral type with non-smooth complex coefficients on arbitrary tree.

[22] Buterin S.A. On damping a control system of arbitrary order with global aftereffect on a tree, Math. Notes 115 (2024) no. 6, 877–896.

Example I. Let b_j , c_j and T_j be independent of $j \in \{2, \ldots, m\}$. Then we have m - 1 copies of one and the same scenario starting from the time point $t = T_1$. Assume that

$$\alpha_1 = 1, \quad \alpha_j = \frac{1}{m-1}, \quad j = \overline{2, m}, \tag{36}$$

By the symmetry, the solution $[y_1, y_2, \ldots, y_m]$ of the boundary value problem \mathcal{B} contains m-1 equal components: $y_2(t) \equiv \ldots \equiv y_m(t)$ (otherwise, this solution would not be unique). Hence, the number of equations in the problem \mathcal{B} can be reduced to just two, namely:

$$(\ell_1 y)'(t) = b_1 \ell_1 y(t) + \begin{cases} c_1 \ell_1 y(t+\tau), & 0 < t < T_1 - \tau, \\ c_2 \ell_2 y(t+\tau - T_1), & T_1 - \tau < t < T_1, \end{cases}$$
(37)

and

$$(\ell_2 y)'(t) = b_2 \ell_2 y(t) + c_2 \ell_2 y_2(t+\tau), \quad 0 < t < T_2 - \tau.$$
(38)

Moreover, conditions (27), (29)-(31) will take the forms

$$y_1(t) = \varphi(t), \ t \in [-\tau, 0]; \quad y_2(t) = y_1(t + T_1), \ t \in (-\tau, 0); \\ y_2(0) = y_1(T_1); \quad y_2(t) = 0, \ t \in [T_2 - \tau, T_2],$$

$$(39)$$

respectively, while the Kirchhoff condition (33) can be represented as

$$y_1'(T_1) + (b_1 - b_2)y_1(T_1) + (c_1 - c_2)y_1(T_1 - \tau) = y_2'(0).$$
(40)

In particular, if $b_1 = b_2$, $c_1 = c_2$, the problem (37)–(40) takes the form (21), (22), (24), where $a = 0, b = b_1, c = c_1, T = T_1 + T_2$, while

$$y(t) := y_1(t), \ 0 \le t \le T_1, \ y(t) := y_2(t - T_1), \ t > T_1.$$
 (41)

Conclusion: Artificial reproducing copies of one and the same scenario starting from a certain point of the interval and employing appropriate weights in the corresponding energy functional leads to the same optimal control as in the original interval case.

Example II. Consider the simple control problem

$$y'(t) = u(t), \quad y(0) = 2, \quad y(T) = 0.$$
 (42)

According to Theorems 1 and 2, the optimal control $u(t) \in L_2(0,T)$ is unique, while the corresponding optimal trajectory y(t) obeys the BVP

$$y''(t) = 0, \quad y(0) = 2, \quad y(T) = 0.$$
 (43)

Assume that we need to find the optimal control but we know only that T may be equal either to 2 or to 4. The precise information on T will be available only starting from t = 1.

Main question: Which control u(t) should be chosen before the time point t = 1?

An **answer** comes when we extend the system (42) to a 3-star graph Γ_3 taking into account both possibilities.

Denote by $y_1(t)$ a trajectory on the interval (0, 1), which can be only common, and by $\tilde{y}_2(t)$ and $\tilde{y}_3(t)$ – two possible trajectories on (1, 2) and (1, 4), respectively. Then we arrive at the control problem on Γ_3 :

$$y'_j(t) = u_j(t), \quad 0 < t < 1, \quad j = 1, 2, \qquad y'_3(t) = u_3(t), \quad 0 < t < 3,$$

 $y_1(0) = 2$, $y_1(1) = y_2(0) = y_3(0)$, $y_2(1) = y_3(3) = 0$, where $y_j(t) = \tilde{y}_j(t+1)$ for j = 2, 3. Assume that the probability of T = 2 equals $p \in (0, 1)$. Hence, 1 - p is the probability of T = 4. Thus, in the corresponding energy functional, we have $\alpha_1 = 1$, $\alpha_2 = p$ and $\alpha_3 = 1 - p$, while $T_1 = T_2 = 1$ and $T_3 = 3$.

According to Th. 3, the optimal trajectory $[y_1, y_2, y_3]$ solves the BVP

$$y_{j}''(t) = 0, \quad 0 < t < 1, \quad j = 1, 2, \qquad y_{3}''(t) = 0, \quad 0 < t < 3, \quad (44)$$
$$y_{1}(1) = y_{2}(0) = y_{3}(0), \quad y_{1}'(1) = py_{2}'(0) + (1 - p)y_{3}'(0), \quad (45)$$
$$y_{1}(0) = 2 \quad y_{2}(0) = 0 \quad (46)$$

$$y_1(0) = 2, \quad y_2(1) = y_3(3) = 0,$$
 (46)

whose solution has the form

$$y_1(t) = 2(1-t) + \frac{3t}{p+2}, \quad y_2(t) = 3\frac{1-t}{p+2}, \quad 0 < t < 1, \qquad (47)$$
$$y_3(t) = \frac{3-t}{p+2}, \quad 0 < t < 3. \qquad (48)$$

Although the trajectory $y_{1,2}$ is shorter than the composite trajectory $[y_1, y_2]$, while $y_{1,3}$ is shorter than $[y_1, y_3]$, these composite trajectories allow one to take more advantageous position at the time point $t = T_1$. Finally, note the point $y_1(1) = \frac{3}{p+2}$ sweeps the interval $(y_{1,2}(1), y_{1,3}(1)) = (1, \frac{3}{2})$ as soon as p ranges over (0, 1). [22] Buterin S.A. On damping a control system of arbitrary order with global aftereffect on a tree, Math. Notes 115 (2024) no. 6, 877–896.Consider the equations of neutral type

$$\ell y(t) := \sum_{k=0}^{n} \left(b_k(t) y^{(k)}(t) + c_k(t) y^{(k)}(t-\tau) \right) = u(t), \quad t > 0, \quad (49)$$

with a constant delay $\tau > 0$ and complex-valued components such that

$$\forall T > 0 \quad b_n, \ b_n^{-1}, \ c_n \in L_{\infty}(0,T), \quad u, \ b_k, \ c_k \in L_2(0,T), \quad k = \overline{0, n-1}.$$

Prehistory of the system is determined by the conditions:

$$y(t) = \varphi(t) \in W_2^n[-\tau, 0], \quad t \in (-\tau, 0),$$
 (50)

$$y^{(k)}(0) = \varphi^{(k)}(0), \quad k = \overline{0, n-1}.$$
 (51)

Fix $T > 2\tau$ and find $u(t) \in L_2(0, T)$ bringing into the equilibrium state

$$y(t) = 0, \quad t \in [T - \tau, T].$$
 (52)

Thus, we arrive at the variational problem

$$J(y) = \int_0^T |\ell y(t)|^2 dt \to \min$$
(53)

under the conditions (50)-(52).

Put

$$\tilde{\ell}_k y(t) := \overline{b_k(t)} \ell y(t) + \overline{c_k(t+\tau)} \ell y(t+\tau), \quad 0 < t < T-\tau, \quad k = \overline{0, n},$$

and introduce the quasi-derivatives

Theorem 5. A function $y(t) \in W_2^n[-\tau, T]$ is a solution of the variational problem (50)–(53) if and only if it obeys the conditions

$$y^{\langle k \rangle}(t) \in W_1^1[0, T - \tau], \quad k = \overline{n, 2n - 1},$$
 (55)

and solves the self-adjoint boundary value problem \mathcal{B} for the equation $y^{\langle 2n \rangle}(t) = 0, \quad 0 < t < T - \tau,$ (56)

under the conditions (50)-(52).

Theorem 6. The problem \mathcal{B} has a unique solution $y(t) \in W_2^n[-\tau, T]$ obeying (55). Moreover, the estimate

$$\|y\|_{W_2^n[-\tau,T]} \le C \|\varphi\|_{W_2^n[-\tau,0]},$$

is fulfilled, where C is independent of $\varphi(t)$.

On the quasi-derivatives

[23] Shin D. On the solutions of a quasi-differential expression of the n-th order, Rec. Math. [Mat. Sbornik] 7(49) (1940) no. 3, 479–532.

[24] Everitt W.N. Integrable-square solutions of ordinary differential equations (III), Quarter.J. Math. 14 (1963) no.1, 170–180.

[25] Naimark M.A. Linear Differential Operators. Part II: Linear Differential Operators in Hilbert Space, Ungar, New York, 1968.

[26] Neiman-Zade M.I. and Shkalikov A.A. Schrödinger operators with singular potentials from spaces of multipliers, Math. Notes 66 (1999) no. 5, 599–607.

[27] Savchuk A.M. and Shkalikov A.A. *Sturm-Liouville operators with singular potentials*, Math. Notes 66 (1999) no. 6, 741–753.

[28] Mirzoev K.A. and Shkalikov A.A. Differential operators of even order with distribution coefficients, Math. Notes 99 (2016) no. 5, 779–784.

[29] Vladimirov A.A. On one approach to definition of singular differential operators, arXiv: 1701.08017 [math.SP], 2017.

[30] Bondarenko N.P. Linear differential operators with distribution coefficients of various singularity orders, Math. Meth. Appl. Sci. 46 (2022) no.6, 6639–6659.

[28] Mirzoev K.A. and Shkalikov A.A. Differential operators of even order with distribution coefficients, Math. Notes 99 (2016) no. 5, 779–784.

$$\sum_{k,s=0}^{n} (r_{ks}(t)y^{(n-k)})^{(n-s)}, \quad -\infty \le a < t < b \le \infty, \tag{57}$$

where r_{ks} are complex-valued functions such that

$$\frac{1}{\sqrt{|r_{00}|}}, \ \frac{1}{\sqrt{|r_{00}|}}R_{ks} \in L_{2,\text{loc}}(a,b), \quad k,s = \overline{0,n}, \tag{58}$$

while

$$R_{ks}^{(l)} = r_{s,k}, \quad l = \min\{k, s\}.$$
(59)

[26] Neiman-Zade M.I. and Shkalikov A.A. Schrödinger operators with singular potentials from spaces of multipliers, Math. Notes 66 (1999) no. 5, 599–607.

[27] Savchuk A.M. and Shkalikov A.A. Sturm-Liouville operators with singular potentials, Math. Notes 66 (1999) no. 6, 741–753.

Consider the differential expression

$$\ell_0 y(t) := -y''(t) + q(t)y(t), \quad 0 < t < 1,$$
(60)

where q(t) is a complex distribution in $W_2^{-1}[0, 1]$. The latter means

$$q = \sigma', \quad \sigma \in L_2(0, 1). \tag{61}$$

Consider the quasi-derivative

$$y^{[1]} = y' - \sigma y.$$
 (62)

Then

$$\ell_0 y = -(y^{[1]})' - \sigma y^{[1]} - \sigma^2 y =: y^{[2]}.$$
(63)

Example 1

Let $n = 1, b_1 = 1, c_0 = c_1 = 0$, while $b_0 \in L_2(0, 1)$ is real valued. Then

$$\ell y = y' + b_0 y, \tag{64}$$

$$\tilde{\ell}_0 y = b_0 \ell y = b_0 y' + b_0^2 y, \quad \tilde{\ell}_1 y = \ell y,$$
(65)

$$y^{\langle 1 \rangle} = \tilde{\ell}_1 y = y' + b_0 y, \tag{66}$$

$$y^{\langle 2 \rangle} = \tilde{\ell}_0 y - (y^{\langle 1 \rangle})' = -(y^{\langle 1 \rangle})' + b_0 y^{\langle 1 \rangle}$$
(67)

or

$$y^{\langle 2\rangle} = -y'' + qy, \tag{68}$$

where $q \in W_2^{-1}[0, 1]$. More precisely,

$$q = -b'_0 + b_0^2, \quad b_0 \in L_2(0, 1).$$
 (69)

Substituting $b_0 = -u'/u$ into (69) gives

$$-u'' + qu = 0. (70)$$

Example 2

Let

$$n = 1, \quad b_1 = 1, \quad c_1 = a, \quad b_0 = b, \quad c_0 = c,$$
 (71)

where $a, b, c \in \mathbb{R}$. Then

$$\ell y(t) = y'(t) + ay'(t-\tau) + by(t) + cy(t-\tau)$$
(72)

and

$$y^{\langle 1 \rangle}(t) = \ell y(t) + a \ell y(t+\tau), \quad t \in [0, T-\tau].$$
 (73)

More precisely,

$$y^{\langle 1 \rangle}(t) = (1+a^2)y'(t) + ay'(t-\tau) + ay'(t+\tau)$$

$$+(ac+b)y(t) + cy(t-\tau) + aby(t+\tau).$$
(74)

[18] Skubachevskii A.L. On the problem of damping a control system with after effect, Russian Acad. Sci. Dokl. Math. 49 (1994) 282–286.

Example 3

Let $n = 2, b_2 = c_1 = 1, b_0 = b_1 = c_0 = c_2 = 0.$

Then we have an expression of the retarded type:

$$\ell y(t) = y''(t) + y'(t - \tau).$$
(75)

Hence, for
$$t \in [0, T - \tau]$$
, we have
 $\tilde{\ell}_0 y(t) = 0, \quad \tilde{\ell}_1 y(t) = \ell y(t + \tau), \quad \tilde{\ell}_2 y(t) = \ell y(t),$
(76)
 $y^{\langle 2 \rangle}(t) = \tilde{\ell}_2 y(t) = y''(t) + y'(t - \tau),$
(77)
 $y^{\langle 3 \rangle}(t) = \tilde{\ell}_1 y(t) - (y^{\langle 2 \rangle})'(t)$
 $= -y'''(t) + y''(t + \tau) - y''(t - \tau) + y'(t).$
(78)

Thus, assuming that $T = 4\tau$ and $\varphi(t) \in W_2^2[-\tau, 0] \setminus W_1^3[-\tau, 0]$, we have

$$y'''(t) \in W_1^1[0, 3\tau] \implies y^{\langle 3 \rangle}(t) \notin W_1^1[0, 3\tau],$$
 (79)

which holds also for $\varphi(t) \in W_1^3[-\tau, 0]$ if $y''(0) \neq \varphi''(0)$.

Let \mathcal{T} be a tree with vertices $\{v_0, v_1, \ldots, v_m\}$ and edges $\{e_1, \ldots, e_m\}$; $\{v_0, v_{d+1}, \ldots, v_m\}$ are boundary vertices and $\{v_1, \ldots, v_d\}$ are internal. Let $e_j = [v_{k_i}, v_j], j = \overline{1, m}$, and $k_1 = 0$. The vertex v_0 is labelled as root. v_5 e_5 v_2 v_3 e_8 \mathcal{U} e_4 e_3 e_9 e_1 v_9 v_0 Fig. 2. A non-star tree with m = 9 and d = 3, $k_1 = 0$, $k_2 = k_3 = 1$, $k_4 = k_5 = 2$, $k_6 = k_7 = k_8 = k_9 = 3$.

The mapping $k_j : \{1, \ldots, m\} \to \{0, 1, \ldots, d\}$ uniquely determines the structure of \mathcal{T} .

Indeed, denote

$$V_j := \{\nu : k_\nu = j\}.$$

Then for each $j = \overline{0, d}$, the set $\{e_{\nu}\}_{\nu \in V_j}$ coincides with the set of edges emanating from the vertex v_j .

By a function y on \mathcal{T} we mean an m-tuple $y = [y_1, \ldots, y_m]$ whose component y_j is defined on the edge e_j , i.e. $y_j = y_j(t), t \in [0, T_j]$, where T_j is the length of e_j .

We also say that the function y is defined on the extended tree \mathcal{T}_{τ} if it is defined on \mathcal{T} and its first component $y_1(t)$ is defined also for $t \in [-\tau, 0)$.

For definiteness, let $\tau < T_j$ for all $j = \overline{1, m}$.

Consider the control system determined by the Cauchy problem on \mathcal{T}_{τ} :

$$\ell_j y(t) := \sum_{k=0}^n \left(b_{k,j}(t) y_j^{(k)}(t) + c_{k,j}(t) y_j^{(k)}(t-\tau) \right) = u_j(t), \qquad (80)$$
$$0 < t < T_j, \quad j = \overline{1, m},$$

$$y_j(t) = y_{k_j}(t + T_{k_j}), \quad t \in (-\tau, 0), \quad j = \overline{2, m},$$
(81)

$$y_j^{(k)}(0) = y_{k_j}^{(k)}(T_{k_j}), \quad k = \overline{0, n-1}, \quad j = \overline{2, m},$$
(82)

$$y_1(t) = \varphi(t) \in W_2^n[-\tau, 0], \quad t \in (-\tau, 0),$$
 (83)

$$y_1^{(k)}(0) = \varphi^{(k)}(0), \quad k = \overline{0, n-1},$$
(84)

with complex-valued $\varphi(t)$ and

 \mathbf{n}

$$b_{n,j}, \frac{1}{b_{n,j}}, c_{n,j} \in L_{\infty}(0, T_j), \quad u_j, b_{k,j}, c_{k,j} \in L_2(0, T_j), \quad k = \overline{0, n-1}.$$

The Cauchy problem
$$(80)$$
- (84) has a unique solution
 $y = [y_1, \ldots, y_m] \in W_2^n(\mathcal{T}_{\tau}) := W_2^n[-\tau, T_1] \oplus \bigoplus_{j=2}^m W_2^n[0, T_j].$

One needs to find a control

$$u = [u_1, \dots, u_m] \in L_2(\mathcal{T}) := \bigoplus_{j=1}^m L_2(0, T_j)$$

bringing the system (80)-(84) into the equilibrium state

$$y_j(t) = 0, \quad t \in [T_j - \tau, T_j], \quad j = \overline{d+1, m},$$

(85)

and minimizing the norm $||u||_{L_2(\mathcal{T})} = \sqrt{\sum_{j=1}^m ||u_j||_{L_2(0,T_j)}^2}$. Thus, we arrive at the variational problem

$$\mathcal{J}(y) := \sum_{j=1}^{m} \int_{0}^{T_j} |\ell_j y(t)|^2 dt \to \min$$

for the functions $y = [y_1, \ldots, y_m]$ on \mathcal{T}_{τ} obeying (81)-(85).

Denote

$$\ell_{k,j}y(t) = \overline{b_{k,j}(t)}\ell_jy(t) + \begin{cases} \overline{c_{k,j}(t+\tau)}\ell_jy(t+\tau), & 0 < t < T_j - \tau, \quad j = \overline{1,m}, \\ \sum_{\nu \in V_j} \overline{c_{k,\nu}(t+\tau-T_j)}\ell_\nu y(t+\tau-T_j), & T_j - \tau < t < T_j, \quad j = \overline{1,d}. \end{cases}$$

$$(87)$$

Consider the quasi-derivatives

$$y_{j}^{\langle n \rangle}(t) := \ell_{n,j} y(t),$$

$$y_{j}^{\langle n+l \rangle}(t) := \ell_{n-l,j} y(t) - (y_{j}^{\langle n+l-1 \rangle})'(t), \quad l = \overline{1, n},$$

$$j = \overline{1, m}.$$
(88)

On the set of functions $y = [y_1, \dots, y_m] \in W_2^n(\mathcal{T}_{\tau})$ obeying the conditions $y_i^{\langle k \rangle}(t) \in W_1^1[0, l_j], \quad k = \overline{n, 2n - 1}, \quad j = \overline{1, m},$ (89)

we consider the boundary value problem \mathcal{B} :

$$y_j^{\langle 2n \rangle}(t) = 0, \quad 0 < t < l_j, \quad j = \overline{1, m},$$
 (90)

$$y_j(t) = y_{k_j}(t + T_{k_j}), \quad t \in (-\tau, 0), \quad j = \overline{2, m},$$

$$u^{(k)}(0) = u^{(k)}(T_{k_j}), \quad k = \overline{0, n-1}, \quad i = \overline{2, m},$$
(81)

$$y_{j}^{(n)}(0) = y_{k_{j}}^{(n)}(T_{k_{j}}), \quad k = 0, n - 1, \quad j = 2, m,$$

$$(82)$$

$$y_1(t) = \varphi(t), \quad t \in (-\tau, 0), \tag{83}$$

$$y_1^{(k)}(0) = \varphi^{(k)}(0), \quad k = \overline{0, n-1},$$
(84)

$$y_j(t) = 0, \quad t \in [T_j - \tau, T_j], \quad j = \overline{d+1, m},$$
 (85)

$$y_j^{\langle k \rangle}(l_j) = \sum_{\nu \in V_j} y_{\nu}^{\langle k \rangle}(0), \quad j = \overline{1, d}, \quad k = \overline{n, 2n - 1}.$$
(91)

Theorem 7. The function $y \in W_2^n(\mathcal{T}_{\tau})$ is a solution of the variational problem (81)–(86) if and only if it obeys the conditions $y_i^{\langle k \rangle}(t) \in W_1^1[0, l_j], \quad k = \overline{n, 2n - 1}, \quad j = \overline{1, m},$ (89)

and solves the boundary value problem \mathcal{B} .

Theorem 8. The problem \mathcal{B} has a unique solution $y \in W_2^n(\mathcal{T}_{\tau})$, obeying the conditions (89). Moreover, the estimate

$$\|y\|_{W_2^n(\mathcal{T}_{\tau})} \le C \|\varphi\|_{W_2^n[-\tau,0]},\tag{92}$$

holds, where C does not depend on $\varphi(t)$.

Thank you for your attention!