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− y′′j (x) + qj(x)yj(x) = λyj(x), 0 < x < 1, j = 1, m, (1)

where qj(x) are integrable functions,

y1(1) = y2(1) = . . . = ym(1) (continuity conditions), (2)

y′1(1) + y′2(1) + . . . + y′m(1) = 0 (Kirchhoff ′s condition), (3)

yj(0) = 0, j = 1, m. (4)



Our goal was to define an operator with constant delay of the form

− y′′(x) + q(x)y(x− a), 0 < x < 1, (5)

on graphs.
Various operators with deviating argument on an interval have been
actively studied starting from the middle of the last century in connection
with numerous applications. For example, see the monographs:
[9] Myshkis A.D. Linear Differential Equations with a Delay Argument, Nauka, Moscow,
1951.

[10] Bellman R. and Cooke K.L. Differential-Difference Equations, The RAND Corp. R-
374-PR, 1963.

[11] Norkin S.B. Second Order Differential Equations with a Delay Argument, Nauka,
Moscow, 1965.

[12] Hale J. Theory of Functional-Differential Equations, Springer-Verlag, NewYork, 1977.

[13] Skubachevskii A.L. Elliptic Functional Differential Equations and Applications, Birk-
häuser, Basel, 1997.



Locally nonlocal case [14]

[14] Wang F. and Yang C.-F. Traces for Sturm–Liouville operators with
constant delays on a star graph, Results Math. (2021) 76:220.
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− y′′j (x) + qj(x)yj(x− aj) = λyj(x), 0 < x < 1, j = 1, m, (6)

where qj(x) = 0 a.e. on (0, aj) for each j,

y1(1) = y2(1) = . . . = ym(1), y′1(1) + y′2(1) + . . . + y′m(1) = 0, (7)

yj(0) = 0, j = 1, m. (4)



Globally nonlocal case

−y′′(x)+ q(x)y(x−a) = λy(x), 0 < x < 2, y(0) = y(2) = 0, (8)

a ∈ (0, 2), q(x) = 0 a.e. on (0, a). (9)

For x ∈ (0, 1), we denote:
y1(x) := y(x), y2(x) := y(x + 1), q1(x) := q(x), q2(x) := q(x + 1).

− y′′j (x) + qj(x)yj(x− a) = λyj(x), 0 < x < 1, j = 1, 2. (10)

y1(1) = y2(0), y′1(1) = y′2(0), (11)

y1(0) = y2(1) = 0, (12)

y2(x− a) := y1(x− a + 1), max{0, a− 1} < x < min{a, 1}, (13)

q1(x) = 0, x ∈ (0, min{a, 1}); q2(x) = 0, x ∈ (0, max{0, a−1}). (14)
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[15] Buterin S.A. Functional-differential operators on geometrical graphs
with global delay and inverse spectral problems, Res. Math. (2023) 78:79.



Let a ∈ (0, 2). The corresponding BVP has the form:

− y′′j (x) + qj(x)yj(x− a) = λyj(x), 0 < x < 1, j = 1, m, (15)

yj(x− a) = y1(x− a + 1), j = 2, m, (16)

for x ∈
(

max{0, a− 1}, min{a, 1}
)
,

y1(1) = y2(0) = . . . = ym(0), y′1(1) = y′2(0) + . . . + y′m(0), (17)

y1(0) = 0, yj(1) = 0, j = 2, m. (18)

Also assume that

q1(x) = 0 a.e. on (0, min{a, 1}),

qj(x) = 0 a.e. on (0, max{0, a− 1}), j = 2, m.

 (19)

[16] Buterin S. On recovering St.–L.-type operators with global delay on
graphs from two spectra, Mathematics 11 (2023) no.12, art. no. 2688.



[17] Krasovskii N.N. Control Theory of Motion, Nauka, Moscow, 1968

[18] Skubachevskii A.L. On the problem of damping a control system
with aftereffect, Russian Acad. Sci. Dokl. Math. 49 (1994) 282–286.

[13] Skubachevskii A.L. Elliptic Functional Differential Equations and
Applications, Birkhäuser, Basel, 1997.

[19] Adkhamova A.S. and Skubachevskii A.L. Damping problem for a
neutral control system with delay, Dokl. Math. 101 (2020) no. 1, 68–70.

[20] Skubachevskii A.L. and Ivanov N.O. Generalized solutions of the
second boundary-value problem for differential-difference equations with
variable coefficients on intervals of noninteger length, Math. Notes 111
(2022) no. 6, 913–924.



Skubachevskii [18] (see also [13]) considered the following control system:

y′(t) + ay′(t− τ) + by(t) + cy(t− τ) = u(t), t > 0. (20)

where a, b, c ∈ R and τ > 0 are fixed, u(t) is a control function,

y(t) = ϕ(t) ∈ W 1
2 [−τ, 0], t ∈ [−τ, 0], (21)

while ϕ(t) is a known real-valued function.

Problem: Bring (20) and (21) into the state y(t) = 0 for t ≥ T > 2τ.

It is sufficient to find a control function u(t) ∈ L2(0, T ) such that

y(t) = 0, t ∈ [T − τ, T ]. (22)

Thus, there arises the variational problem for energy functional

J(y) :=

∫ T

0

(
y′(t) + ay′(t− τ) + by(t) + cy(t− τ)

)2
dt → min (23)

under the conditions (21) and (22).



Theorem 1. [18] A function y(t) ∈ W 1
2 [−τ, T ] is a solution of the

variational problem (21)–(23) if and only if y(t) solves the boundary
value problem for the equation(
(1 + a2)y′(t) + ay′(t− τ) + ay′(t + τ)

)′
+(c−ab)(y′(t−τ)−y′(t+τ))

= (b2 + c2)y(t) + bc(y(t− τ) + y(t + τ)), 0 < t < T − τ, (24)

under the conditions (21) and (22).

The solution is understood in the generalized sense:

(1 + a2)y′(t) + ay′(t− τ) + ay′(t + τ) ∈ W 1
2 [0, T − τ ]. (25)

Theorem 2. [18] For any function ϕ(t) ∈ W 1
2 [−τ, 0], there exists a

unique generalized solution y(t) ∈ W 1
2 [−τ, T ], and

‖y‖W 1
2 [−τ,T ] ≤ c‖ϕ‖W 1

2 [−τ,0],

where c does not depend on ϕ(t).



ppppppppppppppr−τ
e1r

v0

0
0

0

0
r

T1 − τ
r

v1

T1 �
�
�
�
�
�
�
�
�
�
�
��

e2

r
T2 − τ

rT2

��
���

���
���

���
��* e3

r
T3 − τ

rT3

p p p p p p p p p p p p p p p p p p p p p p
B
B
B
B
B
B
B
B
B
BN
em

r
Tm − τ

r Tm

Fig. 1. A star-shaped graph Γm

[21] Buterin S. On damping a control system with global aftereffect on
quantum graphs, arXiv:2308.00496 [math.OC], 2023.



Up to t = T1, our control system is described by the equation (τ < T1)

`1y(t) := y′1(t) + b1y1(t) + c1y1(t− τ) = u1(t), 0 < t < T1, (26)

where y1(t) is defined on the edge e1 = [v0, v1] and has the prehistory

y1(t) = ϕ(t) ∈ W 1
2 [−τ, 0], t ∈ [−τ, 0]. (27)

At v1, this system splits into m− 1 independent processes described by

`jy(t) := y′j(t)+bjyj(t)+cjyj(t−τ) = uj(t), t > 0, j = 2, m, (28)

but having a common history determined by (26), (27) and the relations

yj(t) = y1(t + T1), t ∈ (−τ, 0), j = 2, m. (29)

Conditions (29) mean that the delay propagates through the internal
vertex v1. Besides (29), we impose the continuity conditions at v1 :

yj(0) = y1(T1), j = 2, m. (30)



Fix Tj > τ for j = 2, m. Then damping the control system (26)–(30)
would mean that yj(t) becomes zero as soon as t ≥ Tj for j = 2, m.

For ensuring this, it is sufficient to find uj(t), j = 1, m, that lead to

yj(t) = 0, t ∈ [Tj − τ, Tj], j = 2, m. (31)

It can be interpreted as if all the ”arisen” processes are just possible
scenarios of one and the same process after the time point t = T1.

In other words, at t = T1, there appear m − 1 different scenarios of
the further process flow determined, in turn, by different pairs of the
coefficients bj and cj in equations (28).

Before t = T1, there is no information about which scenario will be
really fulfilled. Thus, the control functions uj(t), j = 1, m, should be
chosen in such a way that the system will be damped surely at each
possible outcome, i.e. on all the edges emanating from the vertex v1.



Since the required controls uj(t) are far not unique, it is natural to try
reducing the corresponding efforts ‖uj‖L2(0,Tj) as much as possible.

When constructing the corresponding energy functional it is reasonable,
as we demonstrate below, to regulate the entrance of each ‖uj‖2

L2(0,Tj)

by choosing a certain positive weight αj.

Thus, we arrive at the variational problem
m∑

j=1

αj

∫ Tj

0
(`jy(t))2 dt → min (32)

under the conditions (27) and (29)–(31), where αj > 0, j = 1, m.

Th. 3. Functions y1(t) ∈ W 1
2 [−τ, T1], yj(t) ∈ W 1

2 [0, Tj], j = 2, m, form
a solution of the variational problem (27), (29)–(32) if and only if they
possess additional smoothness: y1(t) ∈ W 2

2 [0, T1], yj(t) ∈ W 2
2 [0, Tj − τ ],

j = 2, m, and solve the boundary value problem B (see the next slide).



The problem B consists of the equations

α1(`1y)′(t) = α1b1`1y(t)+


α1c1`1y(t + τ), 0 < t < T1 − τ,

m∑
ν=2

ανcν`νy(t + τ − T1), T1 − τ < t < T1,

(`jy)′(t) = bj`jy(t) + cj`jyj(t + τ), 0 < t < Tj − τ, j = 2, m,

along with all standing conditions (27), (29)–(31) as well as the new one

α1y
′
1(T1) + βy1(T1) + γy1(T1 − τ) =

m∑
j=2

αjy
′
j(0), (33)

where

β := α1b1 −
m∑

j=2

αjbj, γ := α1c1 −
m∑

j=2

αjcj. (34)



Theorem 4. The boundary value problem B has a unique solution.
Moreover, the solution satisfies the estimate

‖y1‖W 1
2 [0,T1] +

m∑
j=2

‖yj‖W 1
2 [0,Tj−τ ] ≤ C‖ϕ‖W 1

2 [−τ,0], (35)

where C is independent of ϕ(t).

In [22], Theorems 3 and 4 were generalized to a control system of
arbitrary order and neutral type with non-smooth complex coefficients
on arbitrary tree.

[22] Buterin S.A. On damping a control system of arbitrary order with
global aftereffect on a tree, Math. Notes 115 (2024) no. 6, 877–896.



Example I. Let bj, cj and Tj be independent of j ∈ {2, . . . ,m}. Then
we have m − 1 copies of one and the same scenario starting from the
time point t = T1. Assume that

α1 = 1, αj =
1

m− 1
, j = 2, m, (36)

By the symmetry, the solution [y1, y2, . . . , ym] of the boundary value
problem B contains m − 1 equal components: y2(t) ≡ . . . ≡ ym(t)

(otherwise, this solution would not be unique). Hence, the number of
equations in the problem B can be reduced to just two, namely:

(`1y)′(t) = b1`1y(t) +


c1`1y(t + τ), 0 < t < T1 − τ,

c2`2y(t + τ − T1), T1 − τ < t < T1,

(37)

and
(`2y)′(t) = b2`2y(t) + c2`2y2(t + τ), 0 < t < T2 − τ. (38)



Moreover, conditions (27), (29)–(31) will take the forms

y1(t) = ϕ(t), t ∈ [−τ, 0]; y2(t) = y1(t + T1), t ∈ (−τ, 0);

y2(0) = y1(T1); y2(t) = 0, t ∈ [T2 − τ, T2],

 (39)

respectively, while the Kirchhoff condition (33) can be represented as

y′1(T1) + (b1 − b2)y1(T1) + (c1 − c2)y1(T1 − τ) = y′2(0). (40)

In particular, if b1 = b2, c1 = c2, the problem (37)–(40) takes the form
(21), (22), (24), where a = 0, b = b1, c = c1, T = T1 + T2, while

y(t) := y1(t), 0 ≤ t ≤ T1, y(t) := y2(t− T1), t > T1. (41)

Conclusion: Artificial reproducing copies of one and the same scenario
starting from a certain point of the interval and employing appropriate
weights in the corresponding energy functional leads to the same optimal
control as in the original interval case.



Example II. Consider the simple control problem

y′(t) = u(t), y(0) = 2, y(T ) = 0. (42)

According to Theorems 1 and 2, the optimal control u(t) ∈ L2(0, T ) is
unique, while the corresponding optimal trajectory y(t) obeys the BVP

y′′(t) = 0, y(0) = 2, y(T ) = 0. (43)

Assume that we need to find the optimal control but we know only that
T may be equal either to 2 or to 4. The precise information on T will
be available only starting from t = 1.

Main question: Which control u(t) should be chosen before the time
point t = 1?

An answer comes when we extend the system (42) to a 3-star graph
Γ3 taking into account both possibilities.
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Denote by y1(t) a trajectory on the interval (0, 1), which can be only
common, and by ỹ2(t) and ỹ3(t) – two possible trajectories on (1, 2) and
(1, 4), respectively. Then we arrive at the control problem on Γ3 :

y′j(t) = uj(t), 0 < t < 1, j = 1, 2, y′3(t) = u3(t), 0 < t < 3,

y1(0) = 2, y1(1) = y2(0) = y3(0), y2(1) = y3(3) = 0,

where yj(t) = ỹj(t + 1) for j = 2, 3.



Assume that the probability of T = 2 equals p ∈ (0, 1). Hence, 1− p is
the probability of T = 4. Thus, in the corresponding energy functional,
we have α1 = 1, α2 = p and α3 = 1− p, while T1 = T2 = 1 and T3 = 3.

According to Th. 3, the optimal trajectory [y1, y2, y3] solves the BVP

y′′j (t) = 0, 0 < t < 1, j = 1, 2, y′′3(t) = 0, 0 < t < 3, (44)

y1(1) = y2(0) = y3(0), y′1(1) = py′2(0) + (1− p)y′3(0), (45)

y1(0) = 2, y2(1) = y3(3) = 0, (46)

whose solution has the form

y1(t) = 2(1− t) +
3t

p + 2
, y2(t) = 3

1− t

p + 2
, 0 < t < 1, (47)

y3(t) =
3− t

p + 2
, 0 < t < 3. (48)
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Although the trajectory y1,2 is shorter than the composite trajectory
[y1, y2], while y1,3 is shorter than [y1, y3], these composite trajectories
allow one to take more advantageous position at the time point t = T1.

Finally, note the point y1(1) = 3
p+2 sweeps the interval (y1,2(1), y1,3(1)) =

(1, 3
2) as soon as p ranges over (0, 1).



[22] Buterin S.A. On damping a control system of arbitrary order with
global aftereffect on a tree, Math. Notes 115 (2024) no. 6, 877–896.
Consider the equations of neutral type

`y(t) :=
n∑

k=0

(
bk(t)y

(k)(t) + ck(t)y
(k)(t− τ)

)
= u(t), t > 0, (49)

with a constant delay τ > 0 and complex-valued components such that

∀T > 0 bn, b−1
n , cn ∈ L∞(0, T ), u, bk, ck ∈ L2(0, T ), k = 0, n− 1.

Prehistory of the system is determined by the conditions:

y(t) = ϕ(t) ∈ W n
2 [−τ, 0], t ∈ (−τ, 0), (50)

y(k)(0) = ϕ(k)(0), k = 0, n− 1. (51)

Fix T > 2τ and find u(t) ∈ L2(0, T ) bringing into the equilibrium state

y(t) = 0, t ∈ [T − τ, T ]. (52)



Thus, we arrive at the variational problem

J(y) =

∫ T

0
|`y(t)|2 dt → min (53)

under the conditions (50)–(52).

Put

˜̀
ky(t) := bk(t)`y(t) + ck(t + τ)`y(t + τ), 0 < t < T − τ, k = 0, n,

and introduce the quasi-derivatives

y〈n〉(t) := ˜̀
ny(t),

y〈n+l〉(t) := ˜̀
n−ly(t)− (y〈n+l−1〉)

′
(t), l = 1, n.

 (54)



Theorem 5. A function y(t) ∈ W n
2 [−τ, T ] is a solution of the variational

problem (50)–(53) if and only if it obeys the conditions

y〈k〉(t) ∈ W 1
1 [0, T − τ ], k = n, 2n− 1, (55)

and solves the self-adjoint boundary value problem B for the equation

y〈2n〉(t) = 0, 0 < t < T − τ, (56)

under the conditions (50)–(52).

Theorem 6. The problem B has a unique solution y(t) ∈ W n
2 [−τ, T ]

obeying (55). Moreover, the estimate

‖y‖Wn
2 [−τ,T ] ≤ C‖ϕ‖Wn

2 [−τ,0],

is fulfilled, where C is independent of ϕ(t).



On the quasi-derivatives
[23] Shin D. On the solutions of a quasi-differential expression of the n-th order, Rec.
Math. [Mat. Sbornik] 7(49) (1940) no. 3, 479–532.

[24] Everitt W.N. Integrable-square solutions of ordinary differential equations (III), Quarter.
J. Math. 14 (1963) no.1, 170–180.

[25] Naimark M.A. Linear Differential Operators. Part II: Linear Differential Operators
in Hilbert Space, Ungar, New York, 1968.

[26] Neiman-Zade M.I. and Shkalikov A.A. Schrödinger operators with singular potentials
from spaces of multipliers, Math. Notes 66 (1999) no. 5, 599–607.

[27] Savchuk A.M. and Shkalikov A.A. Sturm–Liouville operators with singular potentials,
Math. Notes 66 (1999) no. 6, 741–753.

[28] Mirzoev K.A. and Shkalikov A.A. Differential operators of even order with distribution
coefficients, Math. Notes 99 (2016) no. 5, 779–784.

[29] Vladimirov А.А. On one approach to definition of singular differential operators,
arXiv: 1701.08017 [math.SP], 2017.

[30] Bondarenko N.P. Linear differential operators with distribution coefficients of various
singularity orders, Math. Meth. Appl. Sci. 46 (2022) no.6, 6639–6659.



[28] Mirzoev K.A. and Shkalikov A.A. Differential operators of even order with distribution
coefficients, Math. Notes 99 (2016) no. 5, 779–784.

n∑
k,s=0

(rks(t)y
(n−k))(n−s), −∞ ≤ a < t < b ≤ ∞, (57)

where rks are complex-valued functions such that

1√
|r00|

,
1√
|r00|

Rks ∈ L2,loc(a, b), k, s = 0, n, (58)

while
R

(l)
ks = rs,k, l = min{k, s}. (59)



[26] Neiman-Zade M.I. and Shkalikov A.A. Schrödinger operators with singular potentials
from spaces of multipliers, Math. Notes 66 (1999) no. 5, 599–607.

[27] Savchuk A.M. and Shkalikov A.A. Sturm–Liouville operators with singular potentials,
Math. Notes 66 (1999) no. 6, 741–753.

Consider the differential expression

`0y(t) := −y′′(t) + q(t)y(t), 0 < t < 1, (60)

where q(t) is a complex distribution in W−1
2 [0, 1]. The latter means

q = σ′, σ ∈ L2(0, 1). (61)

Consider the quasi-derivative

y[1] = y′ − σy. (62)

Then
`0y = −(y[1])′ − σy[1] − σ2y =: y[2]. (63)



Example 1

Let n = 1, b1 = 1, c0 = c1 = 0, while b0 ∈ L2(0, 1) is real valued. Then

`y = y′ + b0y, (64)

˜̀0y = b0`y = b0y
′ + b2

0y, ˜̀1y = `y, (65)

y〈1〉 = ˜̀1y = y′ + b0y, (66)

y〈2〉 = ˜̀0y − (y〈1〉)
′
= −(y〈1〉)

′
+ b0y

〈1〉 (67)

or
y〈2〉 = −y′′ + qy, (68)

where q ∈ W−1
2 [0, 1]. More precisely,

q = −b′0 + b2
0, b0 ∈ L2(0, 1). (69)

Substituting b0 = −u′/u into (69) gives

− u′′ + qu = 0. (70)



Example 2

Let
n = 1, b1 = 1, c1 = a, b0 = b, c0 = c, (71)

where a, b, c ∈ R. Then

`y(t) = y′(t) + ay′(t− τ) + by(t) + cy(t− τ) (72)

and
y〈1〉(t) = `y(t) + a`y(t + τ), t ∈ [0, T − τ ]. (73)

More precisely,

y〈1〉(t) = (1 + a2)y′(t) + ay′(t− τ) + ay′(t + τ)

+(ac + b)y(t) + cy(t− τ) + aby(t + τ).

(74)

[18] Skubachevskii A.L. On the problem of damping a control system
with aftereffect, Russian Acad. Sci. Dokl. Math. 49 (1994) 282–286.



Example 3

Let n = 2, b2 = c1 = 1, b0 = b1 = c0 = c2 = 0.

Then we have an expression of the retarded type:

`y(t) = y′′(t) + y′(t− τ). (75)

Hence, for t ∈ [0, T − τ ], we have
˜̀0y(t) = 0, ˜̀1y(t) = `y(t + τ), ˜̀2y(t) = `y(t), (76)

y〈2〉(t) = ˜̀2y(t) = y′′(t) + y′(t− τ), (77)

y〈3〉(t) = ˜̀1y(t)− (y〈2〉)′(t)

= −y′′′(t) + y′′(t + τ)− y′′(t− τ) + y′(t).
(78)

Thus, assuming that T = 4τ and ϕ(t) ∈ W 2
2 [−τ, 0]\W 3

1 [−τ, 0], we have

y′′′(t) ∈ W 1
1 [0, 3τ ] ⇒ y〈3〉(t) /∈ W 1

1 [0, 3τ ], (79)

which holds also for ϕ(t) ∈ W 3
1 [−τ, 0] if y′′(0) 6= ϕ′′(0).



Let T be a tree with vertices {v0, v1, . . . , vm} and edges {e1, . . . , em};
{v0, vd+1, . . . , vm} are boundary vertices and {v1, . . . , vd} are internal.

Let ej = [vkj
, vj], j = 1, m, and k1 = 0. The vertex v0 is labelled as root.
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Fig. 2. A non-star tree with m = 9 and d = 3,

k1 = 0, k2 = k3 = 1, k4 = k5 = 2, k6 = k7 = k8 = k9 = 3.



The mapping kj : {1, . . . ,m} → {0, 1, . . . , d} uniquely determines the
structure of T .

Indeed, denote
Vj := {ν : kν = j}.

Then for each j = 0, d, the set {eν}ν∈Vj
coincides with the set of edges

emanating from the vertex vj.

By a function y on T we mean an m-tuple y = [y1, . . . , ym] whose
component yj is defined on the edge ej, i.e. yj = yj(t), t ∈ [0, Tj],

where Tj is the length of ej.

We also say that the function y is defined on the extended tree Tτ if it is
defined on T and its first component y1(t) is defined also for t ∈ [−τ, 0).



For definiteness, let τ < Tj for all j = 1, m.

Consider the control system determined by the Cauchy problem on Tτ :

`jy(t) :=
n∑

k=0

(
bk,j(t)y

(k)
j (t) + ck,j(t)y

(k)
j (t− τ)

)
= uj(t),

0 < t < Tj, j = 1, m,
(80)

yj(t) = ykj
(t + Tkj

), t ∈ (−τ, 0), j = 2, m, (81)

y
(k)
j (0) = y

(k)
kj

(Tkj
), k = 0, n− 1, j = 2, m, (82)

y1(t) = ϕ(t) ∈ W n
2 [−τ, 0], t ∈ (−τ, 0), (83)

y
(k)
1 (0) = ϕ(k)(0), k = 0, n− 1, (84)

with complex-valued ϕ(t) and

bn,j,
1

bn,j
, cn,j ∈ L∞(0, Tj), uj, bk,j, ck,j ∈ L2(0, Tj), k = 0, n− 1.



The Cauchy problem (80)–(84) has a unique solution

y = [y1, . . . , ym] ∈ W n
2 (Tτ) := W n

2 [−τ, T1]⊕
m⊕

j=2

W n
2 [0, Tj].

One needs to find a control

u = [u1, . . . , um] ∈ L2(T ) :=
m⊕

j=1

L2(0, Tj)

bringing the system (80)–(84) into the equilibrium state

yj(t) = 0, t ∈ [Tj − τ, Tj], j = d + 1, m, (85)

and minimizing the norm ‖u‖L2(T ) =
√∑m

j=1 ‖uj‖2
L2(0,Tj)

.

Thus, we arrive at the variational problem

J (y) :=
m∑

j=1

∫ Tj

0
|`jy(t)|2 dt → min (86)

for the functions y = [y1, . . . , ym] on Tτ obeying (81)–(85).



Denote

`k,jy(t) = bk,j(t)`jy(t)+



ck,j(t + τ)`jy(t + τ),

0 < t < Tj − τ, j = 1, m,

∑
ν∈Vj

ck,ν(t + τ − Tj)`νy(t + τ − Tj),

Tj − τ < t < Tj, j = 1, d.

(87)

Consider the quasi-derivatives

y
〈n〉
j (t) := `n,jy(t),

y
〈n+l〉
j (t) := `n−l,jy(t)− (y

〈n+l−1〉
j )

′
(t), l = 1, n,

 j = 1, m. (88)



On the set of functions y = [y1, . . . , ym] ∈ W n
2 (Tτ) obeying the conditions

y
〈k〉
j (t) ∈ W 1

1 [0, lj], k = n, 2n− 1, j = 1, m, (89)

we consider the boundary value problem B :

y
〈2n〉
j (t) = 0, 0 < t < lj, j = 1, m, (90)

yj(t) = ykj
(t + Tkj

), t ∈ (−τ, 0), j = 2, m, (81)

y
(k)
j (0) = y

(k)
kj

(Tkj
), k = 0, n− 1, j = 2, m, (82)

y1(t) = ϕ(t), t ∈ (−τ, 0), (83)

y
(k)
1 (0) = ϕ(k)(0), k = 0, n− 1, (84)

yj(t) = 0, t ∈ [Tj − τ, Tj], j = d + 1, m, (85)

y
〈k〉
j (lj) =

∑
ν∈Vj

y〈k〉ν (0), j = 1, d, k = n, 2n− 1. (91)



Theorem 7. The function y ∈ W n
2 (Tτ) is a solution of the variational

problem (81)–(86) if and only if it obeys the conditions

y
〈k〉
j (t) ∈ W 1

1 [0, lj], k = n, 2n− 1, j = 1, m, (89)

and solves the boundary value problem B.

Theorem 8. The problem B has a unique solution y ∈ W n
2 (Tτ), obeying

the conditions (89). Moreover, the estimate

‖y‖Wn
2 (Tτ ) ≤ C‖ϕ‖Wn

2 [−τ,0], (92)

holds, where C does not depend on ϕ(t).



Thank you for your attention!




