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Sturm-Liouville equation

− y′′ + q(x)y = λy, x ∈ (0, 1), (1)

q ∈ L1[0, 1] is a real-valued potential.

{λn}n⩾1 : y(0) = 0, y(1) = 0,

{µn}n⩾1 : y′(0) = 0, y(1) = 0.

Theorem (G. Borg, 1946)

The two spectra {λn}n⩾1 and {µn}n⩾1 uniquely specify the potential q.



Sturm-Liouville equation

−y′′ + q(x)y = λy, x ∈ (0, 1), (1)

y(0) = y(1) = 0. (2)

{λn}n⩾1 � eigenvalues of (1)�(2),

{yn}n⩾1 � normalized eigenfunctions:
∫ 1
0 y2n(x) dx = 1,

αn := y′n(0) > 0 � norming constants.

Theorem (V.A. Marchenko, 1950)

The spectral data {λn, αn}n⩾1 uniquely specify q.

Gel'fand, I.M.; Levitan, B.M. On the determination of a di�erential equation
from its spectral function, Izv. Akad. Nauk SSSR, Ser. Mat. (1951).



Sturm-Liouville equation

−y′′ + q(x)y = λy, x ∈ (0, 1). (1)

Denote by S(x, λ) and C(x, λ) the solutions of (1) satisfying

S(0, λ) = 0, S′(0, λ) = 1, C(0, λ) = 1, C′(0, λ) = 0.

S(x, λ) and C(x, λ) are entire analytic in λ for each �xed x ∈ [0, 1].

{λn}n⩾1 are the zeros of S(1, λ).

{µn}n⩾1 are the zeros of C(1, λ).

Weyl function M(λ) :=
C(1, λ)

S(1, λ)
is meromorphic.

Res
λ=λn

M(λ) = α2
n.

The three sets of the spectral data: {λn, µn}n⩾1, {λn, αn}n⩾1, and M(λ)
uniquely specify each other and the potential q.



Barcilon's problem

y(4) − (p(x)y′)′ + q(x)y = λy, x ∈ (0, 1), (3)

p, q ∈ L1[0, 1].

S12 : y(0) = y′(0) = 0, y(1) = y′(1) = 0,

S13 : y(0) = y′′(0) = 0, y(1) = y′(1) = 0,

S23 : y′(0) = y′′(0) = 0, y(1) = y′(1) = 0.

Inverse problem

Given the three spectra S12, S13, and S23, �nd p and q.

1 Barcilon V. On the uniqueness of inverse eigenvalue problems, Geophysical
Journal International 38 (1974), no. 2, 287�298.

2 Barcilon V. On the solution of inverse eigenvalue problems of high orders,
Geophysical Journal International 39 (1974), no. 1, 143�154.

Uniqueness was not rigorously proved.



McLaughlin's problem

McLaughlin, J.R. Higher order inverse eigenvalue problems. In: Everitt, W.,
Sleeman, B. (eds) Ordinary and Partial Di�erential Equations. Lecture Notes
in Mathematics, vol 964. Springer, Berlin, Heidelberg, 1982.

y(4) − (p(x)y′)′ + q(x)y = λy, x ∈ (0, 1), (3)

U1(y) := y′′(0) + ay′(0)− by(0) = 0,

U2(y) := y[3](0) + by′(0) + cy(0) = 0,
y(1) = y′(1) = 0,

 (4)

y[3] := y′′′ − py′ � quasi-derivative.

{λn}n⩾1 � eigenvalues, assume that they are simple.

{yn(x)}n⩾1 � eigenfunctions,
∫ 1
0 y2n(x) dx = 1, n ⩾ 1.

γn := yn(0), ξn := y′n(0) � norming constants.

Inverse problem

Given the spectral data {λn, γn, ξn}n⩾1, �nd p, q, a, b, and c.

J.R. McLaughlin studied solvability for the inverse problem under a restrictive
condition that transformation operator exists. Uniqueness was an open question.



Transformation operators

y(4) − (p(x)y′)′ + q(x)y = λy, x ∈ (0, 1), (3)

y(x, λ) � solution of (3) with p(x) and q(x).

y0(x, λ) � solution of (3) with p = q = 0.

y(x, λ) = y0(x, λ) +

∫ x

0
K(x, t)y0(t, λ) dt.

Transformation operators are e�ective for order 2, ine�ective for higher orders.

Transformation operators & inverse spectral problems for higher-orders:
L.A. Sakhnovich, I.G. Khachatryan, M.M. Malamud, . . .
(analytic / piecewise analytic coe�cients)



Inverse problems for higher orders: general approach

y(n) +

n−2∑
k=0

pk(x)y
(k), n > 2. (5)

The theory of inverse spectral problems for higher-order di�erential operators
with regular coe�cients pk ∈ Wk

1 [0, 1] has been created by V.A. Yurko.
N.P. Bondarenko has transferred those results to di�erential operators with

distribution coe�cients.

1 Yurko, V.A. Reconstruction of higher-order di�erential operators, Di�er. Equ.
(1989).

2 Yurko, V.A. Method of Spectral Mappings in the Inverse Problem Theory,
Inverse and Ill-Posed Problems Series, VNU Science, Utrecht (2002).

3 Bondarenko, N.P. Linear di�erential operators with distribution coe�cients of
various singularity orders, Math. Meth. Appl. Sci. (2023).



Weyl-Yurko matrix

y(4) − (p(x)y′)′ − (r(x)y)′ − r(x)y′ + q(x)y = λy, x ∈ (0, 1), (6)

where p, q, r ∈ L1[0, 1]. Quasi-derivatives:

y[j] := y(j), j = 0, 1, 2, y[3] := y′′′ − py′ − ry.

Linear forms:

Us(y) := y[s−1](0), s = 1, 4, Vj(y) := y[j−1](1), j = 1, 4. (7)

Denote by {Φk(x, λ)}4k=1 the solutions of (6) satisfying

Us(Φk) = δsk, s = 1, k, Vj(Φk) = 0, j = 1, 4− k. (8)

where δsk is the Kronecker delta. {Φk(x, λ)}4k=1 are called the Weyl solutions, they
are meromorphic in λ for each �xed x ∈ [0, 1].

Weyl-Yurko matrix M(λ) := [Us(Φk)]
4
s,k=1.

Theorem 1 (Yurko � smooth, Bond. � non-smooth)

The Weyl-Yurko matrix M(λ) uniquely speci�es p, q, and r.



Weyl-Yurko matrix

M(λ) =


1 0 0 0

m21(λ) 1 0 0
m31(λ) m32(λ) 1 0
m41(λ) m42(λ) m43(λ) 1

 ,

Denote by {Ck(x, λ)}4k=1 the solutions of equation (6) satisfying

Us(Ck) = δsk, s = 1, 4. (9)

Then

mjk(λ) = −
∆jk(λ)

∆kk(λ)
, 1 ⩽ k < j ⩽ 4, (10)

where ∆kk(λ) := det
(
[V5−p(Cr)]4s,p=k+1

)
and ∆jk(λ) is obtained from ∆kk(λ) by

replacing Cj by Ck.
The zeros of ∆jk(λ) coincide with the eigenvalues of the boundary value problem

Ljk for equation (6) with the boundary conditions:

Uξ(y) = 0, ξ = 1, k − 1, j, Vη(y) = 0, η = 1, 4− k. (11)

Put Lk := Lkk, k = 1, 2, 3.



Separation condition

Separation condition

For k = 1, 2, the problems Lk and Lk+1 have no common eigenvalues.

Theorem 2 (Yurko � smooth, Bond. � non-smooth)

Under the separation condition, the functions m21(λ), m32(λ), and m43(λ)
uniquely specify p, q, and r.

M(λ) =


1 0 0 0

m21(λ) 1 0 0
m31(λ) m32(λ) 1 0
m41(λ) m42(λ) m43(λ) 1

 .

Lejbenzon, Z.L. The uniqueness of the solution of the inverse problem for
ordinary di�erential operators of order n ⩾ 2 and the transformation of such
operators, Sov. Math. Dokl. (1962).



Separation condition

y(4) − (p(x)y′)′ − (r(x)y)′ − r(x)y′ + q(x)y = λy, x ∈ (0, 1), (6)

FAQ: Do there exist such p, q, r that the separation condition holds?

1 Separation condition holds for p = q = r = 0.

2 Recently, the spectral data characterization was obtained in
[Bondarenko N.P., Mathematics, 2024] for the class of equations (6) with
real-valued p ∈ W 1

2 [0, 1], ir ∈ L2[0, 1], q ∈ W−1
2 [0, 1], and the eigenvalues of

the problems Lk, k = 1, 2, 3, being simple and satisfying the separation
condition.

3 One can achieve the separation condition by a �nite perturbation of the
spectral data for any p, q, r.



Barcilon's problem

y(4) − (p(x)y′)′ + q(x)y = λy, x ∈ (0, 1), (3)

Theorem 3 (Guan, Yang & Bond., 2023)

Under the separation condition, the spectra S12, S13, and S23 uniquely specify
the coe�cients p, q ∈ L1[0, 1] of equation (3).

Lemma 1

The spectra S12, S13, S23 coincide with the zeros of the functions ∆22(λ),
∆32(λ), ∆42(λ).

Hadamard's Factorization Theorem implies

∆j2(λ) = cj

∞∏
n=1

(
1−

λ

µjn

)
, j = 2, 3, 4. (12)

S12, S13, S23 ⇒ ∆22(λ), ∆32(λ), ∆42(λ) ⇒ m32(λ), m42(λ).



Barcilon's problem

M(λ) =


1 0 0 0

m21(λ) 1 0 0
m31(λ) m32(λ) 1 0
m41(λ) m42(λ) m43(λ) 1

 .

Lemma 2

For the Weyl-Yurko matrix of equation (3), the following relations hold:

m43(λ) = m21(λ), (13)

m42(λ)−m32(λ)m21(λ) +m31(λ) = 0. (14)

For Lemma 2, the equality r = 0 and special structure of the boundary conditions
are crucial.

Denote S12 = {λn}n⩾1. Using (14), one can �nd {m21(λn)}n⩾1 from S12, S13,
S23.

Lemma 3

The values {m21(λn)}n⩾1 uniquely specify m21(λ).



Relationship between Barcilon's and McLaughlin's problems

y(4) − (p(x)y′)′ + q(x)y = λy, x ∈ (0, 1), (3)

U1(y) := y′′(0) + ay′(0)− by(0) = 0,

U2(y) := y[3](0) + by′(0) + cy(0) = 0,
y(1) = y′(1) = 0.

 (4)

Introduce the linear forms

U3(y) = y(0), U4(y) = y′(0), Vs(y) = y[s−1](1), s = 1, 4. (15)

Let Sjk for (j, k) ∈ {(1, 2), (1, 3), (2, 3)} be the spectra for (3) with the boundary
conditions

Uj(y) = Uk(y) = 0, V1(y) = V2(y) = 0. (16)

Recall that S12 = {λn}n⩾1 are assumed to be simple, γn := yn(0), ξn := y′n(0),

yn(x) � normalized eigenfunctions:
∫ 1
0 y2n(x) dx = 1.

Theorem 4 (Bond., 2023)

Under the separation condition, the three spectra S12, S13, S23 uniquely
determine McLaughlin's data {λn, γn, ξn}n⩾1 (up to the signs of γn and ξn) and
vice versa.



Relationship between Barcilon's and McLaughlin's problems

S12,S13,S23 ⇔ ∆22(λ), ∆32(λ), ∆42(λ) ⇔ {λn,∆32(λn),∆42(λn)}n⩾1

∆32(λn) =
d
dλ

∆22(λn)γ
2
n, ∆42(λn) =

d
dλ

∆22(λn)ξnγn. (17)

Theorem 4 implies

Theorem 5 (Bond., 2023)

Under the separation condition, the spectral data {λn, γn, ξn}n⩾1 uniquely specify
p, q, a, b, and c.

Let us show that the separation condition in Theorem 5 is unnecessary.



Weight matrices

Using the linear forms (4) and (15), de�ne the problems Lk, k = 1, 2, 3, and the
Weyl-Yurko matrix M(λ) = [mjk(λ)]

4
j,k=1.

Lk : Us(y) = 0, s = 1, k, Vj(y) = 0, j = 1, 4− k. (18)

Simplicity condition

Assume that the eigenvalues of L1 and L2 are simple.

Then, all the poles Λ of the Weyl-Yurko matrix elements are simple:

M(λ) =
M⟨−1⟩(λ0)

λ− λ0
+M⟨0⟩(λ0) +M⟨1⟩(λ0)(λ− λ0) + . . . , λ0 ∈ Λ. (19)

De�ne the weight matrices: N (λ0) := M−1
⟨0⟩ (λ0)M⟨−1⟩(λ0), λ0 ∈ Λ.

Theorem 6 (Yurko � smooth, Bond. � non-smooth)

Under the simplicity condition, the spectral data {λ0,N (λ0)}λ0∈Λ uniquely
specify p, q, a, b, c.

Multiple eigenvalues:

Buterin, S.A. On inverse spectral problem for non-selfadjoint Sturm-Liouville
operator on a �nite interval, J. Math. Anal. Appl. (2007).



McLaughlin's problem

Theorem 7 (Bond., 2023)

Under the simplicity condition, the spectral data {λn, ξn, γn}n⩾1 uniquely specify
p, q, a, b, c.

The eigenfunctions ful�ll the conditions:

U1(yn) = U2(yn) = 0, V1(yn) = V2(yn) = 0.

Cases:

(I) : U3(yn) ̸= 0, V3(yn) ̸= 0 (Separation condition);

(II) : U3(yn) ̸= 0, V3(yn) = 0;

(III) : U3(yn) = 0, V3(yn) ̸= 0;

(IV ) : U3(yn) = 0, V3(yn) = 0.



Structure of weight matrices

(I) : N (λn) =


0 0 0 0
0 0 0 0
0 ∗ 0 0
0 0 0 0

 , (II) : N (λn) =


0 0 0 0
0 0 0 0
∗ ∗ 0 0
∗ ∗ 0 0

 ,

(III) : N (λn) =


0 0 0 0
∗ 0 0 0
0 0 0 0
∗ 0 ∗ 0

 , (IV ) : N (λn) =


0 0 0 0
0 0 0 0
0 0 0 0
∗ 0 0 0

 ,

µn ∈ σ(L1) \ σ(L2) : N (µn) =


0 0 0 0
∗ 0 0 0
0 0 0 0
0 0 ∗ 0

 .

{λn, γn, ξn}n⩾1 ⇒ {λ0,N (λ0)}λ0∈Λ.

This idea proves Theorem 7.



Counterexample

In the uniqueness theorem for Barcilon's problem (Theorem 3), the separation
condition cannot be omitted.

Idea: Specify the discrete spectral data {λn,k,Nn,k} (corresponding to the Weyl-
Yurko matrix M(λ)) and construct p(x), q(x) by using the method of spectral
mappings.

Notations:

For k ∈ {1, 2, 3}, denote by {λn,k}n⩾1 the eigenvalues of Lk and Nn,k := N (λn,k).

L1 : y(0) = 0, y(1) = y′(1) = y′′(1) = 0,

L2 : y(0) = y′(0) = 0, y(1) = y′(1) = 0,

L3 : y(0) = y′(0) = y′′(0), y(1) = 0.

L2 = L∗
2, L1 = L∗

3.



Counterexample

Model problem: p̃ = q̃ = 0.

{λ̃n,2}n⩾1 are simple and positive.

{λ̃n,1}n⩾1 and {λ̃n,3}n⩾1 are simple and negative.

Ñn,2 =


0 0 0 0
0 0 0 0

0 β̃n,2 0 0
0 0 0 0

 , Ñn,1 = Ñn,3 =


0 0 0 0

β̃n,1 0 0 0
0 0 0 0

0 0 β̃n,3 0

 ,

λ̃n,1 = λ̃n,3, β̃n,1 = β̃n,3, n ⩾ 1,

λ1,1 = λ1,2 = λ1,3 = λ̃1,2, N1,1 = N1,2 = N1,3 :=

0 0 0 0
0 0 0 0
0 0 0 0
γ 0 0 0

 , γ > 0,

λn,k := λ̃n,k, Nn,k := Ñn,k, n ⩾ 2, k = 1, 2, 3,

Theorem 8 (Bond., 2024)

For each γ > 0, there exist unique functions pγ and qγ of C∞[0, 1] such that
equation (3) with the coe�cients p = pγ and q = qγ has the spectral data
{λn,k,Nn,k}n⩾1, k=1,2,3. The corresponding three spectra S12, S13, S23 do not
depend on the parameter γ > 0.



Conclusions

Under the separation condition, solution of Barcilon's problem is unique.

In general, solution of Barcilon's problem can be non-unique.

Under the separation condition, Barcilon's and McLaughlin's problems are
equivalent.

For McLaughlin's problem, the uniqueness holds without the separation
condition.

Barcilon's and McLaughlin's problems can be interpreted within the
framework of the general approach.
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