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Sturm-Liouville equation

- yll + Q(x)y =Xy, T€ (0’ 1)» (1)

g € L1[0,1] is a real-valued potential.

{Mntnz1: y(0)=0, y(1)=0,
{pn}nz1: ¥'(0)=0, y(1)=0.

Theorem (G. Borg, 1946)

The two spectra {An}n>1 and {pun}tn>1 uniquely specify the potential q.



Sturm-Liouville equation

_yl/ + q(z)y =Xy, z€ (0, 1)7 (1)
y(0) = y(1) =0. (2)
m {A\p}p>1 — eigenvalues of (1)—(2),

® {yn}n>1 — normalized eigenfunctions: fol y2(z)dr =1,

m ap =y}, (0) > 0 — norming constants.

Theorem (V.A. Marchenko, 1950)

The spectral data {\n, an}n>1 uniquely specify q.

m Gel’fand, [.M.; Levitan, B.M. On the determination of a differential equation
from its spectral function, Izv. Akad. Nauk SSSR, Ser. Mat. (1951).



Sturm-Liouville equation

-y’ +a(@y =Xy, x€(01). (1
Denote by S(x, ) and C(z, A) the solutions of (1) satisfying

S(0,A) =0, S(0,\)=1, C0O,N) =1, C'(0,))=0.

m S(z,\) and C(x,\) are entire analytic in A for each fixed z € [0, 1].
m {\n}n>1 are the zeros of S(1,\).
m {{n}n>1 are the zeros of C(1, ).
c(1,N)

m Weyl function M(X) := S

is meromorphic.

M) =a2.
l)\lieisn A\ =az

The three sets of the spectral data: {An, n}n>1, {An, @ntn>1, and M(X)
uniquely specify each other and the potential q.



Barcilon’s problem

y® — (p(z)y) +a(x)y = Ay, x€(0,1),

p,q € L1[0,1].

G12: y(0)=¢'(0)=0, y(1)=
G13: y(0)=y"(0)=0, y(1)=1y(1)=0,

Gao3: y'(0)=¢"(0)=0, y(1)=%'(1)=0.

Inverse problem

Given the three spectra G12, 613, and G23, find p and q.

Barcilon V. On the uniqueness of inverse eigenvalue problems, Geophysical

Journal International 38 (1974), no. 2, 287-298.

Barcilon V. On the solution of inverse eigenvalue problems of high orders,

Geophysical Journal International 39 (1974), no. 1, 143-154.
Uniqueness was not rigorously proved.



McLaughlin’s problem

m McLaughlin, J.R. Higher order inverse eigenvalue problems. In: Everitt, W.,
Sleeman, B. (eds) Ordinary and Partial Differential Equations. Lecture Notes
in Mathematics, vol 964. Springer, Berlin, Heidelberg, 1982.

y @ — (p(x)y) +q(x)y = My, x € (0,1), (3)
Ui(y) :==y"(0) + ay’(0) — by(0) = 0,
Us(y) == yB1(0) + by’ (0) + cy(0) = 0, (4)
y(1) =y'(1) =0,
yBl =y — py’ — quasi-derivative.

m {A\n}n>1 — eigenvalues, assume that they are simple.
® {yn(z)}n>1 — eigenfunctions, fol y2(z)dx =1,n > 1.
® v = yn(0), & =y, (0) — norming constants.
Inverse problem
Given the spectral data {\n,Vn,&n}n>1, find p, q, a, b, and c.

J.R. McLaughlin studied solvability for the inverse problem under a restrictive
condition that transformation operator exists. Uniqueness was.an open question.



Transformation operators

y @ — (p(x)y) +q(x)y = My, x € (0,1), (3)

m y(z, A) — solution of (3) with p(z) and ¢(z).
m yo(z, A) — solution of (3) with p=¢ =0.

Y(@, ) = yo(z, ) + /0 " K o (1, N) d.

Transformation operators are effective for order 2, ineffective for higher orders.

Transformation operators & inverse spectral problems for higher-orders:
L.A. Sakhnovich, I.G. Khachatryan, M.M. Malamud, ...
(analytic / piecewise analytic coefficients)



Inverse problems for higher orders: general approach

n—2
v+ @y, n>2. (5)
k=0

The theory of inverse spectral problems for higher-order differential operators
with regular coefficients p;, € W1’c [0,1] has been created by V.A. Yurko.

N.P. Bondarenko has transferred those results to differential operators with
distribution coefficients.

Yurko, V.A. Reconstruction of higher-order differential operators, Differ. Equ.
(1989).

Yurko, V.A. Method of Spectral Mappings in the Inverse Problem Theory,
Inverse and Ill-Posed Problems Series, VNU Science, Utrecht (2002).

Bondarenko, N.P. Linear differential operators with distribution coefficients of
various singularity orders, Math. Meth. Appl. Sci. (2023).



Weyl-Yurko matrix

y W — (p)y) — (r(@)y) — @)y +al@)y =Xy, =€ (0,1), (6)
where p, q,r € L1[0, 1]. Quasi-derivatives:
4]

Yl =y j=0,1,2, yBl=y" —py —ry

Linear forms:

Us(y) =y710), s=T4 Vi) =90, j=T4 (1)
Denote by {®(z,A\)}#_, the solutions of (6) satisfying
Us(®y) = 85, s=1,k, V(@) =0, j=1,4—k. (8)

where d;j, is the Kronecker delta. {®y(z, )\)}%:1 are called the Weyl solutions, they
are meromorphic in X for each fixed z € [0, 1].

Weyl- Yurko matriz M()\) := [US(CDk)]‘Sl’k:l.

Theorem 1 (Yurko — smooth, Bond. — non-smooth)

The Weyl-Yurko matriz M(\) uniquely specifies p, q, and r.



Weyl-Yurko matrix

1 0 0
ma1 () 1 0
m31(A)  m32(A) 1
ma1(A)  maz(A)  maz(N)

Denote by {C(x,A)}#_, the solutions of equation (6) satisfying

M) =

= o oo

Us(Cr) = s, s=1,4. ©)
Then
Ajr(N) .
mik(\) = A 1<k <j<4, (10)

where Agg()) := det ([vg)_p(or)}g’p:k +1) and A, ()) is obtained from A (\) by
replacing C; by Cj.

The zeros of Ajj (M) coincide with the eigenvalues of the boundary value problem
Ly, for equation (6) with the boundary conditions:

U{(y)zov é.:lyk*lajv Vn(y)zo» 7’]:17471‘:' (11)

Put Ly := Lypi, k=1,2,3.



Separation condition

For k = 1,2, the problems Ly, and L1 have no common eigenvalues.

Theorem 2 (Yurko — smooth, Bond. — non-smooth)

Under the separation condition, the functions mai(\), ma2(\), and maz(N)
uniquely specify p, q, and .

1 0 0 0
_|ma1(N) 1 0 0
M) = mzi()\) maa() 1 0
mai(A)  maza(A)  maz(\) 1

m Lejbenzon, Z.L.. The uniqueness of the solution of the inverse problem for
ordinary differential operators of order n > 2 and the transformation of such
operators, Sov. Math. Dokl. (1962).



Separation condition

y W = (p@)y) — (r(@)y) —r(@)y +al2)y =Xy, =€ (0,1), (6)
FAQ: Do there exist such p, g, » that the separation condition holds?

Separation condition holds for p = q=1r = 0.

Recently, the spectral data characterization was obtained in
[Bondarenko N.P., Mathematics, 2024] for the class of equations (6) with
real-valued p € W3[0,1], ir € L2[0,1], ¢ € W, '[0,1], and the eigenvalues of
the problems Ly, k = 1,2, 3, being simple and satisfying the separation
condition.

One can achieve the separation condition by a finite perturbation of the
spectral data for any p, g, r.



Barcilon’s problem

y@ — (p(a)y') +alx)y =Ny, z€(0,1), (3)

Theorem 3 (Gua:

Under the separation condition, the spectra S12, 13, and Sa3 uniquely specify
the coefficients p,q € L1[0,1] of equation (3).

Lemma 1

The spectra G12, 613, Ga3 coincide with the zeros of the functions Aaa(N),
Aza(N), Aga(N).

Hadamard’s Factorization Theorem implies

_c]H(lf—), j=2,3,4. (12)

Hjn

G12, 613, G23 = Aa2(N), Az2(N), Aga(A) = m32(N), ma2(N).



Barcilon’s problem

1 0 0 0
~|ma1(N) 1 0 0
M) = mi()\) maa () 1 0
m41(>\) maz(N)  maz(A\) 1

Lemma 2

For the Weyl-Yurko matriz of equation (3), the following relations hold:

ma3(A) = ma1(N), (13)
WL42()\) = m32()\)m21 ()\) —+ ma31 ()\) =0. (14)

For Lemma 2, the equality » = 0 and special structure of the boundary conditions
are crucial.

Denote G12 = {An}n>1. Using (14), one can find {m21(An)}n>1 from 12, G13,
Gas.

Lemma 3

The values {ma21(An)}n>1 uniquely specify mai(X).



Relationship between Barcilon’s and McLaughlin’s problems

y W — (p(x)y’) +a(z)y =Ny, =€ (0,1),

Ui(y) :=y"(0) + ay’(0) — by(0) = 0,
Ua(y) == yB1(0) + by’ (0) + cy(0) = 0,
y(1) =¢'(1) =0.

Introduce the linear forms

Us(y) =y(0), Us(y) =4'(0), Vi(y)=yl"11), s=T14

(15)

Let &, for (5, k) € {(1,2),(1,3),(2,3)} be the spectra for (3) with the boundary

conditions
Uj(y) = Up(y) =0, Vi(y) =Va(y)=0.

(16)

Recall that 12 = {An}r>1 are assumed to be simple, vn 1= yn(0), &n =y, (0),

yn(z) — normalized eigenfunctions: fol y2(z)dx = 1.

Theorem 4 (Bond., 2023)

Under the separation condition, the three spectra Gi12, G13, S23 uniquely

determine McLaughlin’s data {An,Vn,&n}tn>1 (up to the signs of yn and &n) and

vice versa.



Relationship between Barcilon’s and McLaughlin’s problems

612,613,623 & Aa(N), Aza(N), Au2(N) & {An, Az2(An), As2(An)bnx1

Azz(An) = %AQQ(AH)’WQL’ Ag2(An) = %A22(An)£n’7n~ (17)

Theorem 4 implies

Theorem 5 (Bond., 2023)
Under the separation condition, the spectral data {An,Vn,&n}n>1 uniquely specify
D, q, a, b, and c.

Let us show that the separation condition in Theorem 5 is unnecessary.



Weight matrices

Using the linear forms (4) and (15), define the problems Ly, k = 1,2, 3, and the

Weyl-Yurko matrix M(X\) = [mjk()\)}? el

Ly: US(y):07 S:ﬂz ‘/J(y)zoa j=14—k. (18)

Simplicity condition

Assume that the eigenvalues of L1 and Lo are simple.

Then, all the poles A of the Weyl-Yurko matrix elements are simple:

M,y (A
;17&0) + Mgy (M) + M1y (Mo)A—Xo) +..., Ao €A (19)
— A0

Define the weight matrices: N'(A\g) := M<_0>1()\0)M<,1>()\0), Ao € A

M(\) =

Theorem 6 (Yurko — smooth, Bond. — non-smooth)

Under the simplicity condition, the spectral data {ho, N'(XAo)}roen uniquely
specify p,q,a,b,c.
Multiple eigenvalues:

m Buterin, S.A. On inverse spectral problem for non-selfadjoint Sturm-Liouville
operator on a finite interval, J. Math. Anal. Appl. (2007).



McLaughlin’s problem

Theorem 7 (Bond., 2023)

Under the simplicity condition, the spectral data {A\n,&n, Yn}n>1 uniquely specify
P, q,a,b,c.

The eigenfunctions fulfill the conditions:

Ui(yn) = Uza(yn) =0, Vi(yn) = Va(yn) = 0.

Cases:

(I): Us(yn) #0, Va(yn) #
(IT): Us(yn) #0, V3
(IIT): Us(yn)=0, V3
(IV): Us(yn) =0, Vi(yn)=

(Separation condition);




Structure of weight matrices

000 0 00 0 0
00 0 0 00 0 0
D: Na)=1y . o ol UD: NO)=1|_ [ ¢ ol
0O 0 0 O * * 0 0
000 0 00 0 0
¥ 0.0 0 00 0 0
UID: NOn) =15 o o of> UV): N=15 o o of:
+ 0 % 0 ¥ 0 0 0
000 0
*x 0 0 0
pn €0(L1)\a(La): N)= |5 o o o
0 0 * O

{)\n77n7§n}n>1 = {)‘O:N()‘O)}AOEA~

This idea proves Theorem 7.



Counterexample

In the uniqueness theorem for Barcilon’s problem (Theorem 3), the separation
condition cannot be omitted.

Idea: Specify the discrete spectral data {\, x, N, x} (corresponding to the Weyl-
Yurko matrix M(A)) and construct p(z), g(z) by using the method of spectral
mappings.

Notations:
For k € {1,2,3}, denote by {\, x}n>1 the eigenvalues of £, and N, i := N (A k).

Li: y(0)=0, y(1)=y'(1)=19"(1)=0,
La2: y(0)=9'(0)=0, y(1)= 0
Lz: y(0) =y (0)=¢"(0), y(1)=

Lo=L3 L1=CL5



Counterexample

Model problem: p = ¢ = 0.
m {A\,,2}n>1 are simple and positive.

® {Mn1}ns1 and {An 3}ns1 are simple and negative.

0 0 0 0 ~0 0 0 0
- o 0o o0 o0 - o _|Bua 0 0 0
./\[n,2 = 1o ,én,,2 0 ol Nn 1= Nn 3 = 0 0 ~0 ol >
0 0 0 0 0 0 Bns O
Xn,l = Xn,37 Bn,l = ﬁn,37 n 2 1,
0O 0 0 O
S 0O 0 0 O
AMai=Mz2=A3=XA12, Nii1=Ni2=Ni3:= o 0 o ol ¥>0
Yy 0 0 0

Ak = Ak, Nopi=Npgk, n22 k=123,

Theorem 8 (Bond., 2

For each v > 0, there exist unique functions p, and gy of C*°[0, 1] such that
equation (3) with the coefficients p = py and q = g has the spectral data

{Mn, ks Nk tn>1, k=1,2,3- The corresponding three spectra S12, S13, Ga3 do not
depend on the parameter v > 0.



m Under the separation condition, solution of Barcilon’s problem is unique.

m In general, solution of Barcilon’s problem can be non-unique.
m Under the separation condition, Barcilon’s and McLaughlin’s problems are
equivalent.

m For McLaughlin’s problem, the uniqueness holds without the separation
condition.

m Barcilon’s and McLaughlin’s problems can be interpreted within the
framework of the general approach.




Papers

Guan, A.-W.; Yang, C.-F.; Bondarenko, N.P. Solving Barcilon’s inverse
problems for the method of spectral mappings, arXiv:2304.05747.

Guan, A.-W.; Yang, C.-F.; Bondarenko, N.P. A class of higher order inverse
spectral problems, arXiv:2402.18343, accepted in Acta Mathematica Sinica.

Bondarenko, N.P. McLaughlin’s inverse problem for the fourth-order
differential operator, arXiv:2312.15988.

Bondarenko, N.P. Counterexample to Barcilon’s uniqueness theorem for the
fourth-order inverse spectral problem, Results in Mathematics 79 (2024),
Article Number 183.

E B M




Thank you for your attention!




