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Graphs

Fig. 1: A tree graph Fig. 2: A graph with cycles
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Metric graphs

Let Ω = {V ,E} be a finite compact graph, where E = {ej}Nj=1 is a

set of edges and V = {vj}Mj=1 is a set of vertices.

A graph is a tree if it has no cycles.

We recall that a graph is called a metric graph if every edge ej ∈ E
is identified with an interval of the real line with a positive length
lj .

Let {γ1, . . . , γm} =: Γ ⊂ V be the boundary vertices,
Γ = {v ∈ V |degree (v) = 1}, where the degree of a vertex is the
number of edges incident to it.
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Quantum graphs

By quantum graphs we understand metric graphs with differential
equations defined on the edges coupled by certain vertex matching
(compatibility) conditions.

Control and inverse theories for PDEs on graphs constitute an
important part of the rapidly developing area of applied
mathematics — analysis on graphs.

Network-like structures play a fundamental role in many problems
of science and engineering. The classical problem is the problem of
oscillations of the flexible structures of strings, beams, cables.

Recently, quantum graphs were applied to description of
nanostructured materials like ceramic or metallic foams,
percolation networks and carbon and graphene nano-tubes.
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Outline

Spectral and dynamical inverse problems on an interval

The boundary control (BC) method

Control and inverse problems on tree graphs

Control and inverse problems on graphs with cycles
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Inverse spectral problems

Let {λn, φn}, n = 0, 1, . . . be the eigenvalues and eigenfunctions of
the Sturm–Liouville problem:

−φ′′(x , λ) + q(x)φ(x , λ) = λφ(x , λ); x ∈ (0, l)

φ(0, λ) = φ(l , λ) = 0.

Inverse spectral problem: recover unknown q(x)
from the spectral data: {λn, φ

′
n(0)}.

Borg, Levinson, Gel’fand, Levitan, Krein, Marchenko

Weyl solution:

−ϕ′′(x , λ) + q(x)ϕ(x , λ) = λϕ(x , λ); ϕ(0, λ) = 1, ϕ(l , λ) = 0.

Weyl function: m(λ) := ϕ′(0, λ), ℑλ > 0.
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Inverse dynamical problems

A. Blagoveschenskii (1971)

The Boundary Control method in inverse theory was proposed
in the end of 80-ies (M. Belishev, A. Kachalov, Ya. Kurylev,
S. Ivanov, S. A.)

It is based on deep connections between inverse (identification)
problems and controllability of dynamical systems.

It was successfully applied to the wave, heat, beam, Maxwell,
Schrödinger, and Dirac equations.



Inverse Problems on Metric Graphs 8 / 34

Wave Equation

Let us consider the 1D wave equation

wtt(x , t)− wxx(x , t) + q(x)w(x , t) = 0, x ∈ (0, l), t > 0, (1)

with the boundary conditions

w(0, t) = f (t), w(l , t) = 0, t > 0, (2)

and zero initial conditions

w(x , 0) = wt(x , 0) = 0, x ∈ (0, l). (3)

The potential q is a real valued integrable function; function f is
referred to as boundary control; w = w f (x , t).
Nonseladjoint version of the BC method was proposed in S.A. and
Belishev (1996).
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Representation of the Solution

For t ≤ l ,

w f (x , t) =

{
f (t − x) +

∫ t
x h(x , s) f (t − s) ds for x < t ,

0 for x ≥ t .
(4)

Here h is a solution of the Goursat problem:

htt − hxx + q(x)h = 0, 0 < x < t , (5)

h(0, t) = 0 , h(x , x) = −1

2

∫ x

0
q(s) ds . (6)

For t ≤ 2l , we set q(2l − x) := q(x), solve (5), (6) and get

u(x , t) = f (t − x) +

∫ t

x
h(x , s)f (t − s)ds − f (t + x − 2l)

−
∫ t

2l−x
h(2l − x , s)f (t − s)ds.
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Inverse Problem and Controllability

The response operator RT : FT 7→ FT := L2(0,T ),

(RT f )(t) := w f
x (0, t)

(
= f ′(t) +

∫ t

0
r(t) f (t − s) ds

)
.

Inverse problem: given R2T recover q(x), x ∈ [0,T ].

Controllability: For any function
z ∈ HT := {u ∈ L2(0,∞) : supp u ⊂ [0,T ] }, there exists a
unique control f ∈ FT such that

(W T f )(x) := w f (x ,T ) = z(x) in HT .

Really, this problem reduces to the equation

z(x) = f (T − x) +

∫ T

x
h(x , s) f (T − s) ds.
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Krein’s type equation

Dual to the control problem is the observation problem, and the
connecting operator CT := (W T )∗W T plays a central role in the
BC method.

(CT f )(t) = f (t)+

∫ T

0
[p(2T−t−s)−p(|t−s|)] f (s) ds, t ∈ [0,T ],

p(t) :=
1

2

∫ t

0
r(s) ds .

Let y(x) be a solution to the boundary value problem

y ′′(x)− q(x)y(x) = 0, y(0) = 0, y ′(0) = 1, x > 0, (7)

and consider the problem: find a control f T ∈ FT such that

w f T (x ,T ) =

{
y(x), x ≤ T ,
0, x > T .

(8)
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Solution of the inverse problem

Function f T satisfies the equation

(CT f )(t) = T − t, t ∈ [0,T ],

Applying the propagation of singularities property, we obtain

w f T (T − 0,T ) = f T (+0) := µ(T ) .

From (8), w f T (T − 0,T ) = y(T ), thus (7) gives

q(T ) =
y ′′(T )

y(T )
=

µ′′(T )

µ(T )
.

By varying T in (0, l), we obtain q(·) in that interval.

Operator RT and the Weyl function m(λ) are connected with each
other through the Fourier–Laplace transform.
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Controllability and inverse problems for trees

It is known that the IBVP for the wave equation on a tree graph is
exactly controllable/observable/identifiable if the
controls/observations act at all or at all but one of the boundary
vertices.

or

The wave equation on graphs with cycles is never exactly
controllable from the boundary. The similar statement is true for
inverse problems.
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Inverse spectral problems for trees

Spectral problem on graph:

−φ′′(x , λ)+q(x)φ(x , λ) = λφ(x , λ); x ∈ Ω\V ; φ(v , λ) = 0, v ∈ Γ

φi (v , λ) = φj(v , λ), ei , ej ∈ E (v);
∑

ei∈E(v)

∂φi (v , λ) = 0; v ∈ V \Γ

Inverse problem 1: recover the topology of Ω, lengths of the
edges and q(x) from {λn, ∂φn|Γ}.
Weyl solution:
ϕi (x , λ) : ϕi (vi , λ) = 1, ϕi (vj , λ) = 0, j ̸= i , vi , vj ∈ Γ.

Weyl matrix function: M(λ) : Mij(λ) = ∂ϕi (vj , λ).

Inverse problem 2: recover the graph from M(λ) : ℑλ > 0.



Inverse Problems on Metric Graphs 15 / 34

Brief review

First papers concerning inverse problems on general metric
trees were: Belishev 2004, Brown and Weikard 2005, Yurko
2005, S.A. and Kurasov 2008. Extensive lists of references can
be found in books: Berkolaiko and Kuchment 2013, Kurasov
2023 and survey Yurko 2016.

As inverse data, Belishev used {λn, ∂φn|Γ}, Brown and
Weikard – M(λ), Yurko – {Mii (λ)}, i = 1, ...,N − 1, S.A. and
Kurasov – {Mij(λ)}, i , j = 1, ...,N − 1.

Brown–Weikard and Yurko assumed that the topology of the
graph and the lengths of edges are given and recovered q(x).

S.A. and Kurasov considered also dynamical inverse problem
and introduced the Leaf Peeling (LP) method. Pure
dynamical version of the LP method was considereded in S.A.,
Mikhaylov and Nurtazina (2017); S.A and Zhao (2021).
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Dynamical inverse problem on trees

utt − uxx + q(x)u = 0 in {Ω \ V } × (0,T ) (9)

∑
ej∈E(v) ∂uj(v , t) = 0, ui (v , t) = uj(v , t)

ei , ej ∈ E (v), v ∈ V \ Γ, t ∈ [0,T ]
(10)

u = f on Γ1 × [0,T ], u = 0 on Γ0 × [0,T ]
u|t=0 = ut |t=0 = 0 in Ω

(11)

The response operator, RT = {RT
ij }mi ,j=1, on L2(0,T ;R|Γ1|) :

(RT f )(t) := ∂uf (·, t)|Γ1 , 0 < t < T . (12)

If Γ1 contains all or all but one of the boundary vertices, the
operator RT known for T > T∗ uniquely determines the graph.
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Leaf peeling method: sheaf and reduced tree

v0

e0

γ3
e3

γ2

e2

γ1

γm

e1

A sheaf on a tree graph rooted at γm (the sheaf is in solid lines), in which
v0 is the abscission vertex and e0 is the stem edge.
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Locality of the BC method

(R11f1)(t) = −f ′1(t)−
2

deg v0
f ′1(t−2l1)+

∫ t

0
r1(s) f1(t−s) ds+ . . .
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Numerical experiments

The method of NSBF was successfully combined with the LP
method for solving spectral inverse problems on metric trees in
S.A., Khmelnitskaya and Kravchenko (2023, 2024).
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Controllability on trees

Control problems for the wave equations on metric graphs (mostly
trees) were studied in many papers, see books: Lagnese,
Leugering, Schmidt (1994); S.A. and Ivanov ()1995); Dáger and
Zuazua (2006); and surveys S.A. (2008); Zuazua (2013).
The sharp estimate of controllability time and the and efficient
control algorithm were proposed in S.A. and Zhao 2021:

Let Γ1 contain all or all but one of the boundary vertices and U be
a union of disjoint paths (except for the end points) from a
controlled vertex to a point in a finite tree graph Ω such that
∪P∈UP = Ω. We put

T0 = min
U

max
P∈U

length P.

If T ≥ T0 then for any y ∈ L2(Ω), there exists f ∈ L2(0,T ;R|Γ1|)
such that uf (·,T ) = y .
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Union path representation of a tree

Controls act at all boundary
vertices

Controls act at all but one
boundary vertices
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Minimal control time

The time T required for either shape or velocity controllability is

T ≥ T0 := min
U

max
P∈U

lengthP(γ, a).

Let Tf := inf
[
T : ∪f ∈FT {supp uf (·,T ) = Ω}

]
Tm := maxj=1,2{dist(vj , v3)}, then

Tf ≤ T0 ≤ Tm

Example:

3
1

1

Tf = 2

3
1

1

T0 = 3

3
1

1

Tm = 4
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Another inverse problem (S.A. and Edward 2021)

v1 v2

v3

v4

v5

v6

v7

v8

v9

e1

e3

e2

e4
e5

e6

e7

e8

u1(v1, t) = f (t), (Rf )(t) =
{∂uf1(v1, t), ∂uf2(v2, t), ∂uf4(v3, t), ∂uf5(v3, t), ∂uf7(v4, t)}.
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Schrödinger operator

We set H := L2(Ω) and define the space H1 of continuous
functions y on Ω such that yj := y |ej ∈ H1(ej) ∀ej ∈ E and
y |Γ = 0. The space H2 consists of functions y ∈ H1 such that
yj ∈ H2(ej) ∀ej ∈ E , satisfying the KN conditions.

Let q be a real valued function (potential) such that q|ej ∈ C [0, lj ].
We define the Schrödinger operator on the graph Ω as the
operator L = − d2

dx2
+ q in H with the domain H2.

Changing q we change the operator L and, therefore, its spectrum
and its multiplicity σ(Ω, q). The maximal possible multiplicity
of an eigenvalue of L, denoted by σ(Ω), is important for control
and inverse problems on graphs. Formula for this graph invariant
was obtained by Kac and Pivovarchik (2011).
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Cyclically connected graphs

A graph Γ is said to be cyclically connected if, for each pair of
vertices v , v ′ ∈ Ω, a finite set of cycles C1,C2, . . . ,Cn in Ω exist
such that v ∈ C1, v

′ ∈ Cn and each neighboring pair of cycles
possesses at least one common vertex.

ν2 ν3

ν1 ν4

ν5

For cyclically connected graphs σ(Ω) = µ+ 1, where µ is the
cyclomatic number of the graph (the number of independent
cycles). We recall that µ = |E | − |V |+ 1.
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Quasi-trees

A graph is a quasi-tree if it is not cyclically connected and each (if
any) cyclically connected subgraph of it has more than one vertex
in common with the complement of this subgraph. For quasi-trees
σ(Ω) = µ+ |Γ| − 1, in particular, for trees it is |Γ| − 1.

ν2

e1
ν1

ν3
e2 ν4

e3

e2

σ(Ω) = µ+ pt − 1, where pt be the numbers of boundary vertices
for the tree obtained by contracting all the cycles of the graph into
vertices.
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Inverse problem for a graph with cycle

ν2

e1
ν1

ν3
e2 ν4

e3

e4

ϕ : ϕ(v1, λ) = 1, ϕ(v4, λ) = 0, KN on v2, v3;
M(λ) := {∂ϕ1(v1, λ), ∂ϕ2(v2, λ)}.
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Observation problem

Now we discuss controllability and observability results for graphs
with cycles obtained in S.A. and Zhao 2022.
We consider the following IBVP:

wtt − wxx + q(x)w = 0 in {Ω \ V } × (0,T ), (13)

wj(v , t) = wk(v , t) for ej , ek ∈ E (vi ), vi ∈ V \ Γ, (14)∑
ej∈E(v)

∂wj(v , t) = 0 at each vertex v ∈ V \ Γ, (15)

w |Γ = 0, w |t=0 = w0, wt |t=0 = w1 in Ω. (16)

Here T > 0, w0 ∈ H1, w1 ∈ H. Using the Fourier method, one
can show, similarly to (S.A. and Nicaise 2015), that for any v , j

w(v , ·) ∈ H1(0,T ), ∂wj(v , ·) ∈ L2(0,T ). (17)
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Observability

We define a set of active vertices V ∗ ⊂ V , where we put observers
for the trace w(v , ·). For each vertex v we define a set of active
edges E ∗(v) ⊂ E (v), where we put observers for directional
derivatives ∂wj(v , ·), ej ∈ E ∗(v). Note that E ∗(v) may be empty.

Let E ∗ := ∪v∈V E ∗(v). We call {V ∗,E ∗} the active set. We say
that the system (13)–(16) with the active set {V ∗,E ∗} is (exactly)
observable in time T if there is a positive constant C ,
independent of w0,w1, such that∑
v∈V ∗

∥w(v , ·)∥2H1(0,T )+
∑
ej∈E∗

∥∂wj(v , ·)∥2L2(0,T ) ≥ C
{
∥w0∥2H1 + ∥w1∥2H

}
for every w0 ∈ H1, w1 ∈ H.
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Acyclic orientation

Start with an acyclic orientation

v1v2

v3

v4

v5

v6

v7

v8

v9v10

v11

v12

v13
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Placing observers on Ω⃗

v1v2

v3

v4

v5

v6

v7

v8

v9
v10

v11

v12

v13

e1

e2

e3

e4

e5

e7

e6

e8

e14

e10

e11

e12

e13 e9

e15
e16

e17

e18

e19

e20

e21
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Minimal number of controllers

v1v2

v3

v4

v5

v6

v7

v8

v9v10

v11

v12

v13

e1

e2

e3

e4

e5

e7

e6

e8

e14

e10

e11

e12

e13 e9

e15
e16

e17

e18

e19

e20

e21

minimal number of controllers= number of controllers needed on the spanning tree +
number of cycles
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The minimal number of controllers as a graph invariant

B1

B4

B7

B8

B5

v6

v9
v5

v7

v3 v2

v11

v3 v2
B2

v5
B3

v9

v6

B6
v7

v11
B9

v11

B10

v6

Cutpoints separate Ω into blocks. Denote |BΓ| as the number of blocks that only
share one common vertex with the rest of the graph. The the minimal number of
controllers is

κ(Ω) =

{
µ+ 1, Ω has one block;

µ− 1 + |BΓ|, Ω has two or more blocks.
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Comparing κ(Ω) with σ(Ω)

For all graphs κ(Ω) ≥ σ(Ω).

κ(Ω) = σ(Ω) for trees, for a ring, the lasso graph, quasi-trees, and
in many other cases.

For a chamomile flower like graph σ(Ω) = µ+ 1, κ(Ω) = 2µ− 1.

If we have κ(Ω) or more observers, we can guarantee exact
controllability, observability and stable indentifiability of our
system.

If we have less than σ(Ω) we do not generally have even
approximate controllability, or uniqueness property of
observation/identification.


