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Inverse Scattering Transform method

u(x , 0)
direct scattering for LODE at t=0−−−−−−−−−−−−−−−−−−−→ S(λ, 0)

solution to NPDE

y ytime evolution of scattering data

u(x , t) ←−−−−−−−−−−−−−−−−−−−−−
inverse scattering for LODE at time t

S(λ, t)

Lax pair (L,A) : L appears in Lψ = λψ and A determines the time evolution

the spectral parameter λ does not change in time, i. e. λt = 0.

the quantity ψt − Aψ remains a solution to Lψ = λψ, i.e. L(ψt − Aψ) = λ(ψt − Aψ).

the quantity Lt + LA− AL is the zero multiplication operator.
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Integrable system of nonlinear equations


Qt + Qxxxxx + 5 Q Qxxx + 5 Qx Qxx + 5 Q2 Qx + 15 P Qxx − 30 P Px + 15 Px Qx = 0,

Pt + Pxxxxx + 5 Q Pxxx + 15 Qx Pxx + 20 Px Qxx + 5 Q2 Px + 10 P Qxxx

− 15 P Pxx + 10 P Q Qx − 15 (Px )
2 = 0.

obtained by using Lt + LA− AL = 0 with the Lax pair (L,A)

L = D3 + QD + P,

A = 9D5 + 15QD3 + (15P + 15Qx )D2 + (10Qxx + 15Px + 5Q2)D + (10Pxx + 10QP).

analyze the inverse scattering problem for

ψ′′′ + Q(x , t)ψ′ + P(x , t)ψ = k3 ψ, x ∈ R, t ≥ 0

relevant wavefunctions, time-evolved wavefunctions

scattering coefficients, time-evolved scattering coefficients

bound-state information, time-evolved bound-state information
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Special cases of the integrable nonlinear system

Sawada–Kotera equation when P(x , t) ≡ 0 and Q(x , t) real valued

Qt + Qxxxxx + 5Qx Qxx + 5QQxxx + 5Q2Qx = 0, x ∈ R

Kaup–Kupershmidt equation when P(x , t) ≡ Qx (x , t) and Q(x , t) real valued

Qt + Qxxxxx + 5Qx Qxx + 5QQxxx + 5Q2Qx = 0, x ∈ R
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A related integrable system

bad Boussinesq system

qt = −3px ,

pt = −qxxx + 8qqx .

obtained by using Lt + LA− AL = 0 with the Lax pair (L,A)

L = iD3 − 2iqD + (p − iq′), A = 3iD2 − 4iq,

selfadjoint linear operator L

bad Boussinesq equation qtt − 3qxxxx + 12(q2)xx = 0, x ∈ R

analyze the inverse scattering problem for

ψ′′′ − 2q(x)ψ′ − [q′(x) + i p(x)]ψ = k3 ψ, x ∈ R

scattering coefficients, time-evolved scattering coefficients

bound-state information, time-evolved bound-state information

explicit closed-form solutions in the reflectionless case
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Direct scattering problem for the third-order equation

ψ′′′ + Q(x)ψ′ + P(x)ψ = k3 ψ, x ∈ R

Jost solutions f (k , x) and g(k , x)

two other fundamental solutions hup(k , x) and hdown(k , x)

scattering coefficients Tl(k), L(k), M(k), Tr(k), R(k), N(k)

bound states at k = kj with dependency constant Dj for 1 ≤ j ≤ N

bound-state information, time-evolved bound-state information

time evolution of fundamental solutions, scattering coefficients

time evolution of bound-state dependency constants

explicit closed-form solutions in the reflectionless case

Soliton solutions to a system of nonlinear evolution equations Tuncay Aktosun 7 / 18



Scattering solutions

ψ′′′ + Q(x)ψ′ + P(x)ψ = k3 ψ, x ∈ R

scattering as a result of Q(x) and P(x) vanishing as x → ±∞

unperturbed problem ψ′′′ = k3 ψ, x ∈ R
asymptotic behavior of any solution

ψ(k , x) ∼

a1(k) ekx + a2(k) ezkx + a3(k) ez2kx , x → +∞,

a4(k) ekx + a5(k) ezkx + a6(k) ez2kx , x → −∞

with z := e2πi/3, satisfying z3 − 1 = (z − 1)(z2 + z + 1) = 0.
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Scattering scenario
 
 
 
 
 
 

ekx Tl(k ) ekx 

 
L(k ) ezkx 

 
M(k ) ez2 kx 

 
 

potentials Q(x ) 

and P(x ) causing 

the scattering 
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Domains in the complex k -plane

ℒ2 ℒ3

ℒ1 ℒ4

Ω1

Ω2

Ω3

Ω4 Ω1 k -domain of f (k , x)

Ω2 k -domain of hdown(k , x)

Ω3 k -domain of g(k , x)

Ω4 k -domain of hup(k , x)

L1 domain of L(k) and Tl(k)

L2 domain of M(k) and Tl(k)

L3 domain of R(k) and Tr(k)

L4 domain of N(k) and Tr(k)
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Jost solutions and scattering coefficients

left Jost solution f (k , x) satisfying lim
x→+∞

f (k , x) ∼ ekx , k ∈ Ω1

lim
x→−∞

f (k, x) ∼


Tl(k)−1 ekx + L(k) Tl(k)−1 ezkx , k ∈ L1,

Tl(k)−1 ekx , k ∈ Ω1,

Tl(k)−1 ekx + M(k) Tl(k)−1 ez2kx , k ∈ L2

Tl(k) left transmission coeff

L(k), M(k) left primary and left secondary reflection coeffs

right Jost solution g(k , x) satisfying lim
x→−∞

f (k , x) ∼ ekx , k ∈ Ω3

lim
x→+∞

g(k, x) ∼


Tr(k)−1 ekx + R(k) Tr(k)−1 ezkx , k ∈ L3,

Tr(k)−1 ekx , k ∈ Ω3,

Tr(k)−1 ekx + N(k) Tr(k)−1 ez2kx , k ∈ L4

Tr(k) right transmission coeff

R(k), N(k) right primary and right secondary reflection coeffs
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Riemann–Hilbert problem formulation

ℒ2 ℒ3

ℒ1 ℒ4

Ω1

Ω2

Ω3

Ω4

-ℒ3

ℒ1

plus region

minus region

P+

P-

minus function

plus function
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Riemann–Hilbert problem formulation

ℒ

Tr(zk) hdown(k,x)
z (1 - z) k

Tl(k) f(k,x)

Trz
2 k hup(k,x)

-z (1 - z) k

g(k,x)

Choose M(k) ≡ 0, N(k) ≡ 0.

Φ+(k , x) :=


Tl(k) f (k , x), k ∈ Ω1,

Tr(zk) hdown(k , x)
z(1− z)k

, k ∈ Ω2

Φ−(k , x) :=


g(k , x), k ∈ Ω3,

Tr(z2k) hup(k , x)
−z(1− z)k

, k ∈ Ω4
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Riemann–Hilbert problem formulation

Φ+(k , x) = Φ−(k , x) + J(k , x), k ∈ L

jump on L J(k , x) =


L(k)Tl(zk) f (zk , x), k ∈ L1,

−R(k)
Tr(zk)
Tr(k)

g(zk , x), k ∈ −L3

solve the Riemann–Hilbert problem and obtain Φ+(k , x)

recover f (k , x) from Φ+(k , x)

recover Q(x) and P(x) from f (k , x) as k →∞ in k ∈ Ω1

f (k , x) = ekx
[

1 +
u1(x)

k
+

u2(x)
k2

+ O
(

1
k3

)]
,

Q(x) = −3
du1(x)

dx
, x ∈ R,

P(x) = 3

[
u1(x)

du1(x)
dx

−
d2u1(x)

dx2
−

du2(x)
dx

]
, x ∈ R.
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Relevant prior work

Kaup (1980)
Started the study of direct and inverse scattering problems for the third-order equation
Unsuccessfully sought a Marchenko-like integral equation

Beals, Coifman (1984,1987)
Direct and inverse scattering for nth order equations
Riemann–Hilbert formulation
no Marchenko-like integral equation

Deift, Tomei, Trubowitz (1982)
direct and inverse scattering related to the bad Boussinesq equation
assumptions Tl(k) ≡ 1, Tr(k) ≡ 1, M(k) ≡ 0, N(k) ≡ 0
Riemann-Hilbert problem, selfadjoint differential operator, analytic continuations
Marchenko-like integral equation, no bound states, no soliton-like solutions

Hirota (1989)
Hirota’s method for particular soliton solutions,
Marchenko-like equation for particular soliton solutions to Sawada–Kotera equation
no relation to scattering

Parker (2001)
dressing method of Shabat–Zakharov to derive Hirota’s integral equation
no relation to scattering
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Marchenko method for the third-order equation

modify Riemann–Hilbert problem Φ+(k , x) = Φ−(k , x) + J(k , x), k ∈ L

e−kx [Φ+(k , x)− 1] = e−kx [Φ−(k , x)− 1] + e−kx J(k , x), k ∈ L

apply the Fourier transform along L, parametrized as k = zs with s ∈ (−∞,+∞)

K (x , y) :=
1

2π

∫ ∞

−∞
ds eisy [

e−zsx [Φ+(zs, x)− 1]
]
, k ∈ L
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Reflectionless case, soliton-like solutions

bound-state information consisting of bound-state energies and dependency constant

transmission coefficients Tl(k) =
N∏

j=1

(k + kj )(k + k∗
j )

(k − kj )(k − k∗
j )
, Tr(k) =

1
Tl(k)

kj = izηj and k∗
j = −iz2ηj for 1 ≤ j ≤ N with z = e2πi/3 and 0 < η1 < · · · < ηN

dependency constants f (kj , x) = Dj (t) g(zkj , x)

dependency constants Dj (t) = Ej e−9
√

3η5
j t

use the bound-state information
{

kj ,Ej
}N

j=1 as input to the Riemann-Hilbert problem

e−kx Φ+(k , x) = e−kx Φ−(k , x), k ∈ L

apply restrictions on dependency constants if P(x , t) ≡ 0 and Q(x , t) real

apply restrictions on dependency constants if P(x , t) ≡ Qx (x , t) and Q(x , t) real

explicit construction of Q(x , t), P(x , t), f (k , x), g(k , x) and all relevant quantities
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