Soliton solutions to a system of nonlinear evolution equations associated with a third-order ordinary linear differential equation

Tuncay Aktosun

Department of Mathematics University of Texas at Arlington Arlington, TX 76019, USA

August 12, 2024
AMP 2024 Online Conference

(joint with A. Choque-Rivero, I. Toledo, and M. Unlu)

Outline

- Inverse Scattering Transform method
- Integrable system of nonlinear equations
- 3 Sawada-Kotera equation, Kaup-Kupershmidt equation, bad Boussinesq equation
- Direct and inverse scattering for the third-order equation
- 5 Riemann–Hilbert formulation of the inverse scattering problem
- Relevant prior work
- Reflectionless case, explicit solutions
- Mathematica demonstration

Inverse Scattering Transform method

$$u(x,0) \xrightarrow{\text{direct scattering for LODE at } t=0} S(\lambda,0)$$
 solution to NPDE \downarrow \downarrow time evolution of scattering data $u(x,t) \xleftarrow{\text{inverse scattering for LODE at time } t} S(\lambda,t)$

Lax pair (L, A): L appears in $L\psi = \lambda \psi$ and A determines the time evolution

- the spectral parameter λ does not change in time, i. e. $\lambda_t = 0$.
- the quantity $\psi_t A\psi$ remains a solution to $L\psi = \lambda\psi$, i.e. $L(\psi_t A\psi) = \lambda(\psi_t A\psi)$.
- the quantity $L_t + LA AL$ is the zero multiplication operator.

Integrable system of nonlinear equations

$$\begin{cases} Q_t + Q_{XXXXX} + 5 Q Q_{XXX} + 5 Q_X Q_{XX} + 5 Q^2 Q_X + 15 P Q_{XX} - 30 P P_X + 15 P_X Q_X = 0, \\ P_t + P_{XXXXX} + 5 Q P_{XXX} + 15 Q_X P_{XX} + 20 P_X Q_{XX} + 5 Q^2 P_X + 10 P Q_{XXX} \\ - 15 P P_{XX} + 10 P Q Q_X - 15 (P_X)^2 = 0. \end{cases}$$

• obtained by using $L_t + LA - AL = 0$ with the Lax pair (L, A)

$$L = D^3 + QD + P.$$

$$A = 9D^5 + 15QD^3 + (15P + 15Q_X)D^2 + (10Q_{XX} + 15P_X + 5Q^2)D + (10P_{XX} + 10QP).$$

analyze the inverse scattering problem for

$$\psi''' + Q(x, t) \psi' + P(x, t) \psi = k^3 \psi, \quad x \in \mathbb{R}, \ t \ge 0$$

- relevant wavefunctions, time-evolved wavefunctions
- scattering coefficients, time-evolved scattering coefficients
- bound-state information, time-evolved bound-state information

Special cases of the integrable nonlinear system

■ Sawada–Kotera equation when $P(x, t) \equiv 0$ and Q(x, t) real valued

$$Q_t + Q_{xxxx} + 5Q_x Q_{xx} + 5QQ_{xxx} + 5Q^2 Q_x = 0, \quad x \in \mathbb{R}$$

■ Kaup-Kupershmidt equation when $P(x,t) \equiv Q_x(x,t)$ and Q(x,t) real valued

$$Q_t + Q_{xxxx} + 5Q_x Q_{xx} + 5QQ_{xxx} + 5Q^2 Q_x = 0, \quad x \in \mathbb{R}$$

A related integrable system

- lacksquare bad Boussinesq system $egin{cases} q_t = -3p_x, \ p_t = -q_{xxx} + 8qq_x. \end{cases}$
- obtained by using $L_t + LA AL = 0$ with the Lax pair (L, A)

$$L = iD^3 - 2iqD + (p - iq'), \quad A = 3iD^2 - 4iq,$$

- selfadjoint linear operator L
- bad Boussinesq equation $q_{tt} 3q_{xxxx} + 12(q^2)_{xx} = 0$, $x \in \mathbb{R}$
- analyze the inverse scattering problem for

$$\psi''' - 2q(x)\psi' - [q'(x) + ip(x)]\psi = k^3\psi, \quad x \in \mathbb{R}$$

- scattering coefficients, time-evolved scattering coefficients
- bound-state information, time-evolved bound-state information
- explicit closed-form solutions in the reflectionless case

Direct scattering problem for the third-order equation

$$\psi''' + Q(x)\psi' + P(x)\psi = k^3\psi, \quad x \in \mathbb{R}$$

- Jost solutions f(k, x) and g(k, x)
- two other fundamental solutions $h^{up}(k, x)$ and $h^{down}(k, x)$
- scattering coefficients $T_1(k)$, L(k), M(k), $T_r(k)$, R(k), N(k)
- **bound states at** $k = k_j$ with dependency constant D_j for $1 \le j \le N$
- bound-state information, time-evolved bound-state information
- time evolution of fundamental solutions, scattering coefficients
- time evolution of bound-state dependency constants
- explicit closed-form solutions in the reflectionless case

Scattering solutions

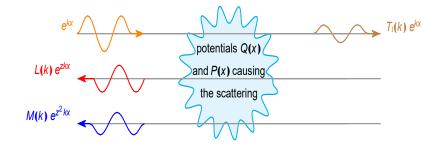
$$\psi''' + Q(x)\psi' + P(x)\psi = k^3\psi, \quad x \in \mathbb{R}$$

- scattering as a result of Q(x) and P(x) vanishing as $x \to \pm \infty$
- unperturbed problem $\psi''' = k^3 \psi$, $x \in \mathbb{R}$
- asymptotic behavior of any solution

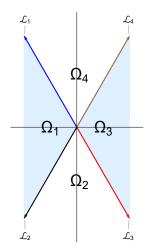
$$\psi(k,x) \sim \begin{cases} a_1(k) e^{kx} + a_2(k) e^{zkx} + a_3(k) e^{z^2kx}, & x \to +\infty, \\ a_4(k) e^{kx} + a_5(k) e^{zkx} + a_6(k) e^{z^2kx}, & x \to -\infty \end{cases}$$

with
$$z := e^{2\pi i/3}$$
, satisfying $z^3 - 1 = (z - 1)(z^2 + z + 1) = 0$.

Scattering scenario



Domains in the complex k-plane



- $\overline{\Omega}_1$ k-domain of f(k,x)
- $\overline{\Omega}_2$ k-domain of $h^{\text{down}}(k,x)$
- $\overline{\Omega}_3$ k-domain of g(k,x)
- $\overline{\Omega}_4$ k-domain of $h^{\rm up}(k,x)$
- \mathcal{L}_1 domain of L(k) and $T_1(k)$
- \mathcal{L}_2 domain of M(k) and $T_1(k)$
- \mathcal{L}_3 domain of R(k) and $T_r(k)$
- \mathcal{L}_4 domain of N(k) and $T_r(k)$

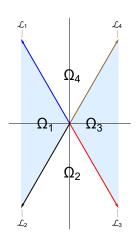
Jost solutions and scattering coefficients

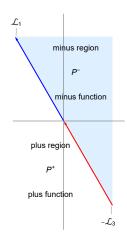
- - left transmission coeff
 - L(k), M(k) left primary and left secondary reflection coeffs
- right Jost solution g(k,x) satisfying $\lim_{x\to -\infty} f(k,x) \sim e^{kx}, \quad k\in \overline{\Omega}_3$

$$\lim_{x \to +\infty} g(k, x) \sim \begin{cases} T_r(k)^{-1} e^{kx} + R(k) T_r(k)^{-1} e^{zkx}, & k \in \mathcal{L}_3, \\ T_r(k)^{-1} e^{kx}, & k \in \Omega_3, \\ T_r(k)^{-1} e^{kx} + N(k) T_r(k)^{-1} e^{z^2kx}, & k \in \mathcal{L}_4 \end{cases}$$

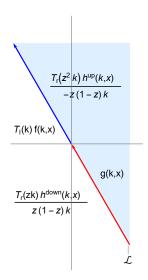
- $T_{\rm r}(k)$ right transmission coeff
- R(k), N(k) right primary and right secondary reflection coeffs

Riemann-Hilbert problem formulation





Riemann-Hilbert problem formulation



Choose
$$M(k) \equiv 0$$
, $N(k) \equiv 0$.

$$\Phi_{+}(k,x) := \begin{cases} T_{1}(k) f(k,x), & k \in \overline{\Omega}_{1}, \\ \\ \frac{T_{r}(zk) h^{\text{down}}(k,x)}{z(1-z)k}, & k \in \overline{\Omega}_{2} \end{cases}$$

$$\Phi_{-}(k,x) := \begin{cases} g(k,x), & k \in \overline{\Omega}_3, \\ \frac{T_{\rm r}(z^2k) \, h^{\rm up}(k,x)}{-z(1-z)k}, & k \in \overline{\Omega}_4 \end{cases}$$

Riemann-Hilbert problem formulation

$$\Phi_+(k,x) = \Phi_-(k,x) + J(k,x), \qquad k \in \mathcal{L}$$

$$\text{jump on } \mathcal{L} \qquad J(k,x) = \begin{cases} L(k) \ T_1(zk) \ f(zk,x), & k \in \mathcal{L}_1, \\ -R(k) \ \frac{T_r(zk)}{T_r(k)} \ g(zk,x), & k \in -\mathcal{L}_3 \end{cases}$$

- solve the Riemann–Hilbert problem and obtain $\Phi_+(k,x)$
- recover f(k, x) from $\Phi_+(k, x)$
- recover Q(x) and P(x) from f(k, x) as $k \to \infty$ in $k \in \overline{\Omega}_1$

$$\begin{split} f(k,x) &= e^{kx} \left[1 + \frac{u_1(x)}{k} + \frac{u_2(x)}{k^2} + O\left(\frac{1}{k^3}\right) \right], \\ Q(x) &= -3 \frac{du_1(x)}{dx}, \qquad x \in \mathbb{R}, \\ P(x) &= 3 \left[u_1(x) \frac{du_1(x)}{dx} - \frac{d^2u_1(x)}{dx^2} - \frac{du_2(x)}{dx} \right], \qquad x \in \mathbb{R}. \end{split}$$

Relevant prior work

- Kaup (1980)
 - Started the study of direct and inverse scattering problems for the third-order equation
 - Unsuccessfully sought a Marchenko-like integral equation
- Beals, Coifman (1984,1987)
 - Direct and inverse scattering for *n*th order equations
 - Riemann-Hilbert formulation
 - no Marchenko-like integral equation
- Deift, Tomei, Trubowitz (1982)
 - direct and inverse scattering related to the bad Boussinesq equation
 - assumptions $T_1(k) \equiv 1$, $T_r(k) \equiv 1$, $M(k) \equiv 0$, $N(k) \equiv 0$
 - Riemann-Hilbert problem, selfadjoint differential operator, analytic continuations
 - Marchenko-like integral equation, no bound states, no soliton-like solutions
- Hirota (1989)
 - Hirota's method for particular soliton solutions,
 - Marchenko-like equation for particular soliton solutions to Sawada–Kotera equation
 - no relation to scattering
- Parker (2001)
 - dressing method of Shabat–Zakharov to derive Hirota's integral equation
 - no relation to scattering

Marchenko method for the third-order equation

■ modify Riemann–Hilbert problem $\Phi_+(k,x) = \Phi_-(k,x) + J(k,x), \quad k \in \mathcal{L}$

$$e^{-kx}[\Phi_+(k,x)-1] = e^{-kx}[\Phi_-(k,x)-1] + e^{-kx}J(k,x), \qquad k \in \mathcal{L}$$

apply the Fourier transform along \mathcal{L} , parametrized as k=zs with $s\in(-\infty,+\infty)$

$$K(x,y) := \frac{1}{2\pi} \int_{-\infty}^{\infty} ds \, e^{isy} \left[e^{-zsx} [\Phi_+(zs,x) - 1] \right], \qquad k \in \mathcal{L}$$

Reflectionless case, soliton-like solutions

- bound-state information consisting of bound-state energies and dependency constant transmission coefficients $T_{\rm l}(k) = \prod_{j=1}^{\bf N} \frac{(k+k_j)(k+k_j^*)}{(k-k_j)(k-k_j^*)}, \quad T_{\rm r}(k) = \frac{1}{T_{\rm l}(k)}$ $k_j = iz\eta_j$ and $k_j^* = -iz^2\eta_j$ for $1 \le j \le {\bf N}$ with $z = {\rm e}^{2\pi i/3}$ and $0 < \eta_1 < \dots < \eta_{\bf N}$ dependency constants $f(k_i, x) = D_i(t) g(zk_i, x)$
 - dependency constants $D_i(t) = E_i e^{-9\sqrt{3}\eta_j^5 t}$
- use the bound-state information $\{k_j, E_j\}_{j=1}^{\mathbf{N}}$ as input to the Riemann-Hilbert problem

$$e^{-kx} \Phi_+(k,x) = e^{-kx} \Phi_-(k,x), \qquad k \in \mathcal{L}$$

- lacksquare apply restrictions on dependency constants if $P(x,t)\equiv 0$ and Q(x,t) real
- **a** apply restrictions on dependency constants if $P(x, t) \equiv Q_x(x, t)$ and Q(x, t) real
- \blacksquare explicit construction of Q(x,t), P(x,t), f(k,x), g(k,x) and all relevant quantities

References

R. Beals and R. Coifman, *Scattering and inverse scattering for first order systems*, Comm. Pure Appl. Math. **37**, 39–90 (1984).

R. Beals and R. Coifman, *Scattering and inverse scattering for first-order systems: II*, Inverse Probl. **3** 577–593 (1987).

P. Deift, C. Tomei, and E. Trubowitz, *Inverse scattering and the Boussinesq equation*, Comm. Pure Appl. Math. **35**, 567–628 (1982).

R. Hirota, Soliton solutions to the BKP equations. II. The integral equation, J. Phys. Soc. Jpn. **58**, 2705–2712 (1989).

D. Kaup, On the inverse scattering problem for cubic eigenvalue problems of the class $\psi_{\text{XXX}}+6Q\psi_{\text{X}}+6R\psi=\lambda\psi$, Stud. Appl. Math. **62**, 189–216 (1980).

A. Parker, A reformulation of the 'dressing method' for the Sawada–Kotera equation, Inverse Probl. 17, 885–895 (2001).

K. Sawada and T. Kotera, *A method for finding N-soliton solutions of the KdV equation and KdV-like equation*, Prog. Theor. Phys. **51**, 1355–1367 (1974).